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Phonon-phonon coupling strengths have been derived from first-principles total-energy calculations for
bcc Zr. It is shown that the instability leading to the bcc-hcp first-order phase transition in Zr is over-
come at high temperatures by the strong interactions between the TI N-point phonon and other low-

lying (110) T~ vibrational modes.
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There has recently been renewed interest in the stabili-
ty of phases separated by a first-order temperature-
dependent phase transition. Insights have been obtained
by the use of simple statistical models and by computer
simulations'; however, for specific materials a more de-
tailed microscopic picture is generally lacking and need-
ed. We show for an important class of transitions that
such a microscopic picture can be obtained through
modern first-principles electronic-structure calculations.

Increases in computing speed have made feasible the
first-principles calculation of many material-dependent
properties —including vibrational frequencies, bulk
moduli, cohesive energies, and phase-transition pres-
sures. These calculational methods are based on the very
precise evaluation of the total-energy changes associated
with atomic displacements in crystals. Unlike traditional
perturbative methods, these calculations are not restrict-
ed to small distortions of the crystal. This enables the
accurate determination of anharmonic interactions as
well as coordinate paths and barrier heights for phase
transitions. Until recently this anharmonic information
has not been analyzed, with the notable exception of the
calculation of the optical-mode frequency shift caused by
the two-phonon process in diamond. In this paper we
use the anharmonic terms derived from accurate total-
energy calculations to obtain phonon-phonon coupling
strengths for the high-temperature bcc phase of Zr. The
temperature dependence of the lattice vibrational modes
is determined, and the interactions responsible for the
high-temperature stability of the bcc phase are
identified.

We have chosen to study the first-order hcp-bcc transi-
tion of Zr for several reasons. First, the transition at
T =1136 K is martensitic, which means the atomic posi-
tions of the parent and the resultant crystal structure are
highly correlated, thus limiting the configuration coordi-
nates which must be varied. (On the basis of the ob-
served correlations in crystal orientations, Burgers pro-

posed that the transition from bcc to hcp occurs through
the displacements of the zone-boundary Ti N-point pho-
non together with a long-wavelength shear. ) Second,
the phonon dispersion curves as a function of tempera-
ture for both the hcp and bcc phases have been obtained
by neutron scattering experiments. These experiments
for the bcc phase showed that the frequencies for the en-
tire [110] T~ phonon branch are indeed very low. In
conjunction with these experimental measurements,
first-principles calculations of the harmonic frequency
for the Ti N-point phonon were made. These calcula-
tions yielded an imaginary frequency which indicates
that within the harmonic approximation this mode for
Zr is unstable. In contrast, similar calculations for the
N-point phonons of bcc Nb and Mo, which are stable at
low temperatures, yielded frequencies in good agreement
with experimental values. Thus, to understand the sta-
bility of the high-temperature bcc phase of Zr and in

particular the measured frequency of 1 THz for the T&

N-point phonon, it is of vital importance to include
anharmonic interactions. The situation is similar to that
of He for which the bcc structure is stabilized by the
anharmonic forces even at zero temperature.

The total-energy calculations were performed by use
of an established first-principles pseudopotential method
which, along with calculational procedures, has been de-
scribed in detail elsewhere. ' The only approximations
involve the treatment of the exchange-correlation energy
using the local-density-functional formalism, " the
frozen-core approximation, and the Born-Oppenheimer
approximation. For the analysis of a particular phonon
the total energy is evaluated as a function of atomic dis-
placements with the atoms moving in the directions cor-
responding to the phonon polarization vector. These so-
called "frozen-phonon" calculations have been shown to
be accurate for the determination of phonon frequencies
in transition metals. ' The results of such calculations
for the Ti mode of Zr are shown in Fig. 1. The inset
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TABLE I. Fourth-order expansion coefticients for the three
X-point and the H-point phonons along with the longitudinal
( —', ,

—', ,
—', ) phonon, labeled ru. The top line gives the results

from first-principles calculations, while the second line gives
the values obtained from the two-parameter fitted function as
described in the text. The units are in Ry/(A' atom).

FIG. I, hE/6 vs 62 for the bcc N-point T~ mode. The slope

of the line gives the fourth-order anharmonic coe%cient for the

energy vs displacement expansion. A displacement correspond-

ing to 62=0.014 and a long-wavelength shear are required to
transform the bcc to the hcp structure.

shows that the energy versus displacement curve has a
minimum at finite displacements and indicates the insta-
bility toward the hcp phase. Expanding the energy in a
power series in the displacement we can write hE
=a6 +b6 +e6 +. . . . The negative harmonic coef5-
cient, a, and the positive fourth-order coeScient, c, are
conveniently displayed in the hF/62 vs 6 plot of Fig. l

(b =0 by symmetry for the Tt mode). Similar analyses
were made for the T2 and I phonons at the N point, the
0-point phonon, and the longitudinal ( —,', —,', —', ) phonon
(the cu-phase mode).

To determine the temperature dependence of the pho-
non frequencies we make use of the extensive perturba-
tion formalism developed for the treatment of anharmon-
ic eAects in crystals. ' The total crystalline potential en-

ergy can be expanded through fourth order in a power
series in the displacement from equilibrium. The har-
monic approximation consists of retaining the second-
order terms and solving the quadratic Hamiltonian for
the normal modes of vibration. The third- and fourth-
order expansion coefficients are then rewritten in terms
of these normal-mode coordinates so that the anharmon-
ic efI'ects are treated as interactions among the elementa-
ry excitations (phonons). Our strategy is then to first
obtain the unrenormalized harmonic frequency by means
of the first-principles frozen-phonon calculations. Calcu-
lations were made at lattice constants corresponding to
T=O and 1400 K. The renormalized frequency and
phonon lifetime can then be obtained from the calculated
anharmonic potential by use of the standard formulas. '

In these formulas the temperature enters through the
phonon occupation factors.

In order to evaluate the third- and fourth-order cou-
pling coeScients for all phonon interactions the anhar-
monic part of the calculated interatomic interactions was
fitted with a short-ranged two-parameter potential of the
form C/R . The parameters C and fV were determined
from a least-squares fit to the fourth-order expansion

TABLE II. The calculated contributions at T =1400 K to
the square of the N-point Tl phonon frequency; v2 is the imagi-
nary harmonic frequency, and v3 and v4 are the third- and
fourth-order corrections. The corresponding values for the 1V-

point T2 and longitudinal (L) modes are also given. The ex-
perimental frequencies are from Ref. 7.

v$ vf vf v =gv„v(THz) v,„~(THz)

Tl —3.7 —2. 1 6.8
Tp 12.7 —0.8 3.2
L 9.9 —1.5 17.5

1.0
15. 1

25.9

1.0
3.9
5. 1

1.00+ 0.05
3.88 ~ 0. 15
4.28 ~ 0.40

coefficients from frozen-phonon calculations for five

low-lying phonons. Table I lists the coefficients and the
corresponding values from the fit function. The good
quality of the fit indicates that this functional form is

adequate for Zr; however, similar calculations for Mo re-
quired a more complicated potential form to obtain a fit
of similar quality.

The required Brillouin-zone summations were per-
formed by our dividing the zone into small cubes with
the phonon coupling strengths assumed constant within
each cube. The frequencies appearing in the typical
second-order perturbation theory formulas were assumed
to vary linearly within each cube and the integration in-

volving the energy denominators was performed analyti-
cally. ' To test convergence the number of cubes along
I to H was varied between ten and thirty. The large
fourth-order term was fully converged even with ten
divisions, while the smaller third-order term required
more than twenty divisions, For computational ex-
pediency the majority of the calculations were performed
with ten divisions and the uncertainty of the third-order
results is ~ 20%.

The second-, third-, and fourth-order contributions to
the squared frequency at 1400 K for the Ti, T2, and lon-
gitudinal N-point phonons are given in Table II. For the
Ti mode the second- and third-order contributions are
negative, while the fourth-order contribution is larger
and positive. The resulting frequency of 1 THz is in

good agreement with experiment; however, this may be
somewhat fortuitous since the theoretical uncertainty is
on the order of 25%. The important point is the renor-
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FIG. 2. Contour plot of the fourth-order contributions of
branch 1 to the frequency shift for the T I N-point phonon.
The contours are shown for the high-symmetry planes. The
dominant contributions along the (110) direction arise from
strong anharmonic coupling and high thermal occupation.
(Contours at intervals of 200 in arbitrary units. )

malization of the T& mode to finite frequency, a result
which is insensitive to the calculational details. The
fourth-order contributions responsible for the frequency
shift of the T~ mode arise predominantly from interac-
tions with other phonons in the T~ branch. This is evi-
dent in Fig. 2 where the k-dependent fourth-order contri-
butions are shown. A similar analysis shows that third-
order contributions are large in the vicinity of the I
point.

Frequencies were also evaluated for a number of other
phonon modes. I n general, the calculated frequency
corrections are dominated by the positive fourth-order
contributions and are in the direction to bring the har-
monic frequencies (from the frozen-phonon calculations)
into agreement with the high-temperature experimental
values; however, the renormalized frequencies in some
cases overshoot by as much as 20%. We believe that this
may be partly due to limitations in applying perturbation
theory at such high temperatures, and possibly also due
to the simple central-potential approximation.

Having established that at high temperatures the bcc
structure is a stable phase from the viewpoint of the
finite frequency of the N-point Ti phonon, it is instruc-
tive to consider how this stability can be understood in

terms of the free energy. At high temperatures the bcc
phase is stable because of its large entropy relative to
other lattice configurations. For Zr the lattice vibration-
al entropy accounts for —60% of the diA'erence between
the bcc and hcp phases (the other -40% is from elec-
tronic contributions). We can calculate the change (de-
crease) of lattice entropy when the bcc structure is dis-
torted toward the hcp phase by a small displacement cor-
responding to the T~ N-point mode. We use the anhar-
monic coupling constants to evaluate the changes in all

the phonon frequencies as the bcc crystal is distorted.
The phonons whose frequencies are most aftected by the
T~ distortion of the bcc crystal are those with strong pos-
itive fourth-order anharmonic coupling constants (see
Fig. 2). The strong fourth-order coupling of the T~
mode with other phonons raises the frequencies of these
modes, leading to a decrease in the entropy. This implies
that at high enough temperatures the bcc phase will be
stable relative to the T

~ displacements. A similar
analysis for a distortion of the bcc structure correspond-
ing to the co-phase displacements again shows that a
strong coupling to the T~ branch is responsible for the
stability of the bcc phase at high temperatures. It is in-

teresting that Zener long ago proposed that the extra en-

tropy needed to stabilize the bcc phase comes from soft
shear modes in the bcc structure. ' Our investigations
have confirmed this picture and singled out the T ~

branch as being most important because the phonons of
this branch are low in energy and have large anharmonic
coupling.

The analysis given above leads to the following micro-
scopic picture of the first-order bcc-to-hcp phase transi-
tion. For the internal energy, there is a trough in coordi-
nate space leading from the bcc down to the ground-state
hcp structure. ' The relevant coordinates are the dis-
placements corresponding to the T i N-point phonon
(internal shear) and a uniform or long-wavelength shear.
At temperatures just above the transition the bcc struc-
ture is stable and has the lowest free energy. At these
temperatures the hcp structure corresponds in the free-
energy surface to a local minimum separated from the
bcc minimum along the transition path by a low barrier.
As the temperature is decreased there is a small soften-
ing of the bcc T

~
branch which lowers the free energy

along the transition path and allows the hcp minimum to
fall below the bcc free energy. This is consistent with
the Landau theory for a weakly first-order transition and
a study of the transition based on a Landau expansion of
the free energy has been made with the T& displacements
and the coupled uniform shear as coordinates. ' There is

currently much interest in precursor eAects for such
transitions and our calculations indicate that at the N
point, in addition to a frequency decrease of roughly
2&&10 THz/K for the T~ mode, a quasielastic contri-
bution is also present in the neutron scattering cross sec-
t.ion. A theoretical study of the temperature and wave-
vector dependence of the quasielastic linewidths is now
underway. Comparison with experiment is made difficult

by the extra contributions from impurities and other de-
fects, but strong quasielastic scattering was observed un-
der the Ti branch in bcc Zr. A more thorough experi-
mental study of the quasielastic scattering would now
seem worthwhile,

In summary, we have used first-principles total-energy
calculations to derive phonon-phonon coupling strengths
and have established the interactions responsible for sta-
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bilization of the high-temperature bcc phase of Zr.
These calculations provide a concrete basis for under-
standing the weakly first-order bcc-to-hcp transforma-
tion and open the door for a detailed theoretical analysis
of precursor eff'ects in a class of materials that is experi-
mentally interesting.
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