
VciLU ME 5 8 27 APRIL 1987 NUMBER 17

Power Spectra of Strange Attractors near Homoclinic Orbits
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Assuming that the chaotic time history of a single variable in a diA'erential equation possessing a
strange attractor can be represented as the random superposition of deterministic "structures, " we pre-
dict the power spectral density. We justify the assumption for perturbations of nonlinear Hamiltonian
oscillators and compare our predictions with computations on versions of Dufting's equation.

PACS numbers: 05.45.+b, 02.50.+s, 03.20.+i

Dynamical systems possessing strange attractors have
been proposed as models for a number of physical pro-
cesses which display erratic temporal behavior. ' As
well as the abstract theory, there are analytical tech-
niques for the study of global behavior in specific sys-
tems. In particular, Melnikov's method detects trans-
verse homoclinic points in differential equations which
are small perturbations of integrable (Hamiltonian) sys-
tems. This, with the Smale-Birkhoff homoclinic theo-
rem, " implies the existence of chaotic motions among
the solutions of the equation in question: qualitative in-
formation. In contrast, here we propose a method which
provides quantitative statistical measures of solutions:
We compute power spectra of chaotic motions which are
perturbations of homoclinic orbits. Our approach relies
on the existence of global homoclinic structures,
verifiable by Melnikov theory, and derives from the no-
tion of coherent structures in turbulence theory. It has
been proposed before in connection with differential
equations, although this earlier work does not provide a
priori estimates from the unperturbed equations, as does
ours. Spectral estimates have also been proposed in con-
nection with the scaling properties of period doubling
and halving and with intermittency.

For simplicity, we focus on perturbations of the
Du%ng equation

x y,

y x —x +e(ycosvt —6y+Px y), 0( e«1,

although our ideas are more generally applicable. For
e =0 the unperturbed phase plane of (I) has a pair of
homoclinic orbits to the saddle point (x,y ) = (0,0):
I |U I +1, solutions in which may be written

x+. (t): =s(t) =&2secht, x (t) = —s(t) (2)

(Fig. I). The Melnikov method concerns orbits which
remain near I + i when t..&0 and involves computation of

(0)

FIG. 1. The Duffing oscillator: (a) Unperturbed phase
plane; (b) perturbed Poincare map showing transverse homo-
clinic points and trapping region D.
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the function
p OO

M(0) = s(t)[ycosv(t+0) —Ss(t)+ps (t)s(t)]dt = J2ytrvsech( —,
'

harv)sinv0 —46/3+16p/15 (3)

[for Eq. (I)]. If M has simple zeros, then, for
sufficiently small e, chaotic motions exist near I ~ ~.

If we assign a bi-infinite sequence a(z) = [all — to each
initial condition z =(x(0),y(0)) which reflects the be-
havior of the solution x(t) based at z in that ak =0 or 1

depending on whether the jth maximum of I x(t)
I

occurs near I +~ (x & 0) or I
~ (x & 0), then every pos-

sible sequence is realized. Moreover, 0 and 1 have equal
probabilities and the process has no memory. Thus,
there are solutions which appear indistinguishable from
random processes such as coin tossing.

These chaotic motions do not necessarily constitute a
strange attractor: Orbits may escape from the chaotic
set and approach stable periodic motions. The homoclin-
ic tangencies predicted by Melnikov analysis guarantee
that stable periodic orbits exist for residual subsets of pa-
rameter values. ' " Ho~ever, these orbits correspond to
long periods and are not typically observed. In the fol-
lowing we assume that small (numerical) errors destabi-
lize any such sinks. This assumption is essential: There
is no proof yet of the existence of a true strange attractor
(dense orbit) for a specific difl'erential equation.

If 6 = 4P/5 & 0, almost all orbits starting in some disk
are attracted to a neighborhood D of I -+~ of width
eyvsech( —,

' trv); see Fig. 1. ' This explains our choice of
perturbation: We wish to control the solutions as far as
possible (but see below). A typical chaotic solution x(t)
can thus be approximated by

x(t) = g ( —I )'s(t —T, ), (4)
i OO

where at E [0, 1) is the symbol described above, s(t) is
the unperturbed homoclinic loop I +& [Eq. (2)1, and TJ is
the time at which the jth maximum in

I x(t) I
occurs.

Moreover, it is reasonable to suppose that al E [0, 1 j and

T~ C R are random variables.
Multiplying x(t) by a "window" function gL(t) of

compact support [gt (t) =1,
I
t

I
& L; gt. (t) =0,

I
t

I
& L j, we rewrite the (integrable) windowed solution

xL(t) as a convolution integral xL(t):
p OO

at (t' —t)s(t')dt',

where

at. (r) =gt. (r)g,. ( —1)'8(r+ T, )

is a (finite) random sequence of delta functions (shot
noise). The Fourier transform of xL(t) is then the prod-
uct at (f)s(f) of the transforms' and the power spectral
density of x(t) is

! From the definition we have

(f) = ~ g ( )( —I)"8( +T ) "f'd

J2
I ) a& (2nf T& (6)

I aL (w) I

= (J~+J2+ I ) +g. z (cross terms), (7)

where typical "cross terms" have the form
aj+ak i 2~f(TJ —Tk)( —1) ' 'e ' ', and, since a~ and T~ are indepen-

dent random variables, by the central limit theorem the
sum of these terms is o(L). Thus, substituting into (5),
we obtain

E (f) =(I/T)
I $(f) I (8)

Goldshtik gives an alternative derivation. For the ex-
ample in question, from (2) we have

E„(f)=(2tr /T)sech (tr f)
—(8' /T)exp( —2tr f), f large. (9)

We remark that if phase coherence exists (Tf is ran-
dom but a~ is not) then peaked spectra typical of "noisy
periodicity" are predicted.

It remains to estimate T, the mean gap between pas-
sages around either I —

~ or I +~. Fix a neighborhood U
of (0,0) of size tt (Fig. I). Solutions leaving U through
Rp or L p return to U via R; or L; after time zp = 1 which
is independent of e to leading order. Within U, the time
spent is controlled by how close solutions are to the
stable manifolds of (0,0) on entry. Linear estimates
show that this time is X+ In(p/d), where d & p is the
distance from the stable manifold and X+ & 0 is the ex-
panding eigenvalue of (0,0). d is controlled by the split-
ting of the manifolds, which the Melnikov calculation
shows to be O(eM) [Eq. (3)J. ' Assembling this infor-
mation, we find that the typical gap between structures is

T = const —k+ ' In[emaxellM(0) llf.

In our example, with t5 =4P/5, we have M(0)
= J2ytrvsech( —,

' trv)sinv0 and

T = const —X+ ' ln [eyvsech( —,
' trv)1, (10)

where —Jj and J2 are the largest integers such that
T —J I I TJ I

& L; i.e. , J~+Jq=2L/T, where T=(T~
—

T~ ~) is the mean gap between events. From (6), we

compute

E (f) = lim (1/2L) I xt. (f) I

'

= lim (1/2L) I at (f) I I s(f) I (5)

where X+ = 1+e8/2. Equations (10) and (9) provide
our estimates for the power-. spectrum. The main points
are that E„(f) decays exponentially with f, that this
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functional form is governed by the unperturbed homo-
clinic orbits I ~ ~, and that the level of E„(f)—1/T is
relatively insensitive to all parameters except the (circu-
lar) frequency v of the excitation. We remark that the
decay of E„(f) implies exponential decay of correlation
functions.

Numerical experiments were conducted to investigate
the predictive value of the theory. Fourth-order Runge-
Kutta solutions of (1) were generated with 32-64 in-

tegration steps per period 2tr/v. The resulting time his-

tory x(t) was divided into 16 sequential records, each of
duration 1613 seconds (4096 data points), which were
fast Fourier transformed and averaged to yield power
spectra. Double precision arithmetic was used through-
out.

For y=0, Melnikov theory predicts that, for parame-
ters P and 6 near which M =0 (6=4P/5), the auto-
nomous perturbed system has an attracting double
homoclinic cycle: i.e. , I +~ g I

~
is an "infinite period"

attractor. ' The precise value of eP used was found by
numerical search and corresponded to the longest-period
motions found. Note how close it is to prediction,
despite the size of the parameters. Next, ey was in-
creased to 0.001, 0.01, and 0. 1 in turn and v varied from
0.5 to 6. Typical durations between homoclinic events
were computed to test Eq. (10), which was fitted by a
single determination of the unknown constant at
e=O.OI, v=5, with use of X+ = I+eh/2=1. 2. Figure 2

shows that the simple theory behaves reasonably we11.

Power spectra were then computed —typical examples
are shown, with a time series, in Fig. 3. The general
form of the power spectrum is predicted well; in particu-
lar the asymptotic slope of log~o[E, (f)], 2tr log~oe [Eq.
(9)], is close to that observed. Spectral levels were ob-
tained from the mean-gap estimate of Eq. (10) after the
single fit described above. We observe that the theory
consistently over (under) estimates E, (f) at low (high)
frequencies. We suspect that this is due to the fact that

x())
2—

I. , balll IJI, l1 I i
&

ll , i II lki I 50o, „,
t'

-2-
(a)

0
-I

-2
(E„&t&)

-4

(b)

—l0

0.2 0.4 0.6 0.8
f, Hz

l. 2

the structure x(t) is significantly perturbed from that of
Eq. (2) for eP, e6 = 0.5. To test this, we integrated the
Hamiltonian system 6=P=O, with ay=0. 001, 0.01, 0. 1

and obtained spectra whose asymptotic slopes lay within

2% of the prediction. ' Integrations with lower values of
eP and e6 show a similar trend. We note that

~
E, (f) ~

covers over ten decades and that, above 1.2 Hz, spectra
drop into the numerical noise floor. '

We then set P=O and studied the forced, damped
DuNng equation. ' Here there is proof of transverse
homoclinic orbits and chaotic invariant sets represent-
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FIG. 2. Mean gaps between maxima of
~
x(t)

~
as functions

of force level ey and frequency v: ay=0. 001 (squares), ey
=0.01 (triangles), ay=0. 1; solid lines, Eq. (10).

FIG. 3. (a) A time history of Eq. (I) for e8=0 4, eP
=0.498005, ay=0. 001, v= 1. (b) Power spectra for t. 6=0.4,
eP =0.0498005, ey =0.01, and various v. (c) Power spectra
for ay=0. I and various v. Scales are displaced for clarity and

theory of Eqs. (9) and (10) is plotted as dashed lines.
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structures appearing in the signal. When the signal is
the solution of a perturbed ordinary diA'erential equation
possessing homoclinic orbits to a hyperbolic saddle point,
both the mean gap and the spectral form can be comput-
ed a priori. The simple theory is in good agreement with
n umerical simulations.

A detailed account of this analysis, more examples,
and an extension to signals containing multiple struc-
tures will be given subsequently. '
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FIG. 4. (a) A time history of Eq. (1) for e6=0.25, eP=0,
ey=0. 3, v= l. (b) Power spectra for eP =0, v= 1, and various
e6, ey.

able as (4) for y) [46l3yv(2tr) tl']cosh( —,
' trv) and e

sufficiently small [cf. Eq. (3)l, and for v=0.8-1.3 and a
range of ey and e6 around 0.2-0.4 chaotic motions are
observed. However, solutions can now stray far from the
unperturbed homoclinic loops I + ~, as the time series of
Fig. 4(a) indicates. Nonetheless, our theory is still use-
ful although it is now impossible to estimate T (it is un-
clear what a "structure" is or how the "mean gap"
should be interpreted [Fig. 4(a)]. Consequently, the
spectral levels cannot be predicted, but the forms and
slopes agree well with Eq. (9); see Fig. 4(b).

To summarize: The assumption of randomly super-
posed deterministic structures leads to a simple predic-
tion of the power spectral density of a chaotic signal.
The functional form of the spectrum is given by the
Fourier transform of an individual structure and its level
is inversely proportional to the mean gap between the
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