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Few-Dimensional Heisenberg Ferromagnets at Low Temperature
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A simple approximation for one- and two-dimensional Heisenberg ferromagnets is proposed. This is a
modification of the spin-wave theory for a three-dimensional ferromagnet and is expected to give correct
low-temperature properties. The free energy and susceptibility of the linear chain are expanded in
powers of square root of temperature. At S= —,

' the results agree excellently with those of Bethe-Ansatz
integral equations. The susceptibility of the two-dimensional square lattice diverges as exp(4ttJS2/T)

PACS numbers: 75.10.Jm, 05.30.Jp

One- and two-dimensional Heisenberg ferromagnets
have a completely ordered ground state but no long-
range order at finite temperature. The transition point is
at zero temperature and the thermodynamic properties
are of interest since they differ from the usual transition
at finite temperature. Experimentally this is important
for an understanding of quasi few-dimensional ferromag-
netic substances such as (C6H~~NH3)CuC13 and
K2CuF4. ' The Hamiltonian is

N0= —Jg(S; St —S ) —2h+S;, J)0.
(ij ) l

Here, (ij ) means that i and j sites are nearest neighbors.
We assume that there are N spins and that 5 is the spin
quantum number.

Low-temperature properties of the S =
2 linear chain

were recently analyzed by Takahashi and Yamada and

by Schlottmann using thermodynamic Bethe-Ansatz
integral equations. Numerical calculation of integral
equations gave a = —

—,
' and y=2. By application of the

least-squares method to the numerical data at 0.004(T/J(1.00, the following expansions were obtained
for free energy f and susceptibility X per site:

f=T[—1.042(T/J) 'I +1 00(T/J) —0.9(T/J) I +O(T )]

E=JT [0.1667+0.581(T/J)'I +0.68(T/J)+O(T I )]

(2)

(3)

In contrast, the usual spin-wave theory gives

f=T[—1.042 1869(T/J)' —0.066 897 1(T/J) —.. . ]

The fact that the first terms of (2) and (4) coincide with each other indicates that the spin-wave theory here applies to
some degree. The second terms, however, are completely different and modification of the theory is necessary to obtain
higher-order terms. In the spin-wave theory the magnetic field h serves as the chemical potential of bosons. At the
limit h 0, the number of bosons becomes infinite. Actually, the number of spin waves should be SN because magne-
tization is zero at the limit. The chemical potential should be chosen so that the density of spin waves is 5. With the
modification of the spin-wave theory (1) can be treated at h =0.

By use of the Holstein-Primakoff transformation [Sl+ =(2S —a&*at)'I aj, S~. =at*(2S —az*al)'I, Sz =S—anal],
the spin-pair operator S;.SJ is represented by boson operators a;* and a;:

S; SJ =S —S(a;*—aj*)(a;—al) —
4 [a;*a&*(a;—at) +(a;* —aj*) a;aj]+O(s '), for i&j (5)

An ideal spin-wave state is given by a
negative integers [ng]:

~ [nl,])=Qg(nl, !) 'I'(ag )"'~ 0).

Here, k varies over N wave vectors in the first Brillouin
zone and al', [=N 'I g exp(ik. rl)aj*] is the creation
operator for a spin wave with wave vector k. At finite
temperature ng is fluctuating and its average value is set
at nt, From (5) and . (6) the expectation value of S; SJ
is given as

nt, = [exp[JS's(k)/T+ v] —1] (8)

s(k)—:gs (1 —cosk b)

(9)S =N 'g~nt„

S'=S —(Nz) -'g„e(k)n„. (10)(S; SJ) =[S N'gz[1 —cosk. (r; —rj—)]nl,] . (7)

set of N non-
The entropy of the state is g&[(1+n~)ln(1+n~)—n~ lnng]. Then, conditions of free-energy minimum
and zero magnetization yield the following self-
consistent equations:
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Here, z is the number of nearest neighbors, 8's are lat-
tice vectors to the nearest neighbors, and v is the reduced
chemical potential. v and S ' should be solved self-
consistently from (9) and (10). In this formulation f
and X become

f= —T[vS+N '+&in(1+ni)] —
& Jz(S —S'),

—e(k)), the sums in Eqs. (9)-(12) are replaced by in-
tegrals. At low temperature we can put S=S' in (8).

For the linear chain w(x) =(2x) 'x '/ (1+x/8. . . ).
Then the sums in (9)- (12) are represented by the Bose-
Einstein integral function F(a,v) =g„,e ""n '. If a
is not a positive integer, F is expanded in a power series
in v.

Z = (4/3TN )gl, ni(ni+ 1). (i2)

By use of the state-density function w(x) =N '+1,6(x

F(a,v) =I (1 —a)v '+ g (n!) '( —v) "1,"(a—n).
n 0

(13)

From Eq. (9) v'/ is obtained as a function of T:

=($ i/2/2S)+ n &/2$( —' )(r &/2/2S)2+~ &$2(L )(r &/2/2S) 3+. . . r =T/JS
Substitution of this into (11) and (12) gives

(i4)

g( 3 )
' ' 1/2

T
(2n) ' 2SJ

T 1 &(r)
+ +4S'J 2S' (2~) '"

1&(—', )
'

T
8 (2n) 2SJ

' 3/2

+O(T'), (is)

g(-,') '
Tg= 3 S"JT 1 ——

S (2~) '/ 2SJ

& 1/2 ~2( 1

+ +O(T"') .
2z 2SJ (i6)

At S= 2 these become

f= T[ —1.042 186 9(T/J) ' + (T/J) —1.232 091 9(T/J) +O(T )]
Z= JT [ —'+0.582 597 4(T/J) ' +0.678 839 6(T/J)+O(T )]

(i7)

All coefficients except the third term of f coincide very
well with (2) and (3).

In a recent paper Schlottmann proposed that X
diverges as J/[T ln (J/T) ]. This contradicts my expan-
sions (16) and (18). He reached this conclusion making
some approximations for the Bethe-Ansatz integral
equation and for this reason I do not believe that his
derivation is analytical. Of course, I myself have not yet
succeeded in making an analytical calculation from
Bethe-Ansatz integral equations. In Fig. 1, therefore, I
compare the numerical results of integral equations, my
expansion (18), and Schlottmann's expansion

f= (4&JS ) T [g(2) + s g(3) (T/JS ) +0(T )],
(20)

(2i)Z = (3xJS) 'exp(4xJS /T) [1+0(T)].

!
tity. The effect of the chemical potential on the zero-
field free energy is thus also very small. On the other
hand, X diverges as v

1 ln ln(J/T)
ln(J/T) ln (J/T)

(i9)
0-5—

His expansion is apparently weaker than mine. From
(7) and (8) we can see that the correlation function de-
cays exponentially and correlation length is JS /T.

Kondo and Yamaji derived similar expressions for f
and Z for the S= 2 linear chain using the Green's-
function decoupling method. Their coefficients are
slightly different from mine. The first term of the free
energy is 6 times the spin-wave result. For susceptibili-
ty they derived the correct first term p =J/6T2.

For the two-dimensional square lattice, the state densi-
ty w(x) is (4x) '[1+(x/8)+O(x )]. From (9) I find
v =exp[ 4mJS T '+O(T)]; th—is is a very small quan-

I

005
I

0.]

FIG. 1. XT J ' as a function of TJ ' for the 5= —,
'

Heisenberg linear chain. Crosses are results of the Bethe-
Ansatz integral equation from Ref. 2. Solid line is my expan-
sion (18). Dashed line is Schlottmann s susceptibility (19)
taken from Ref. 4. My expansion formula coincides accurately
with numerical results of the Bethe-Ansatz integral equation.
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Similar expressions for free enregy and susceptibility
were obtained by Yamaji and Kondo and by Dalton and
Wood, but the coefficients were different. I found that
the correlation length is (JS/T)'~ exp(2xJS /T). De-
tails will be published elsewhere.
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