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Spatial Dependence of the Order Parameter of Superfluid He at the A-B Phase Boundary
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Accurate solutions of the Ginzburg-Landau equations describing the A-B phase boundary for a planar
interface between He-A and He-B are calculated near the tricritical pressure and classified in terms of
simple discrete symmetries. The order-parameter components of the A-B phase boundary and the inter-
facial energy tr&tt(T) deviate considerably from previous variational calculations.

PACS numbers: 67.50.—b

It is known that in the absence of a magnetic field the
two superfluid phases 2 and 8 of He coexist at a partic-
ular temperature T~~, which is a function of pressure. '

Because the order parameters of the two superfluids are
topologically inequivalent there necessarily forms a do-
main wall separating the A phase from the 8 phase.

In the following I assume that the A phase is on the
left and the 8 phase is on the right side of this domain
wall. The orientation of the order parameter in the A
phase is described in terms of a pair of real orthogonal
unit vectors pt and pit in orbital space and a third unit
vector w in spin space. The physical meaning of vr is
that it fixes the direction along which the triplet Cooper
pairs are in the state of total spin

~

S=1, ms =0) while
the meaning of pt and pit is that their cross product
I =ptxpit determines the direction along which the pairs
are in a state of orbital angular momentum ~L =1,
m, =1).

The order parameter in the 8 phase is characterized
by the usual phase variable p and a rotation matrix
R(0, fi). In the bulk the nuclear-spin dipole interaction
between the He particles breaks the spin-orbit symme-
try and fixes the angle 0 at the Leggett value
O=arccos( —

—,
' ) in the 8 phase and also orients I to be

parallel to m in the 2 phase.
In the vicinity of the A-8 phase boundary, however,

within a layer of thickness smaller than the dipole coher-
ence length gD =6 pm, the bending energy dominates by
far the dipole energy and the dipole efrects on the local
order-parameter components may then be taken into ac-
count only perturbatively.

Recently, Yip and Yip and Leggett have pointed out
that the spatial dependence of the order parameter at the
4-B phase boundary of superfluid He induces Andreev
reflection of quasiparticles and therefore gives rise to a
Kapitza resistance and also a friction force for the mov-
ing boundary. The exact spatial dependence of the
superfluid order parameter at the A-8 phase boundary is
then of considerable interest. Following Cross and also
Kaul and Kleinert, I apply Ginzburg-Landau theory to
describe the energetics of the A-8 phase boundary in
superfluid He for temperature and pressure values near
the polycritical point. With the assumption of a planar

4-8 interface oriented parallel to the y-z plane of the
laboratory frame, the superfluid order parameter
=Pi t, ktd~ztTtitTy depends on the x coordinate only.
Consequently, the Ginzburg-Landau equations reduce to
a set of coupled ordinary differential equations for the
nine complex components d~q(x) =Uti(x)+iV~i, (x) of
the order parameter h(x). Here the nine elements
k~otitry with j,X C ( xy, zj define a Cartesian basis to
span the Hilbert space of triplet Cooper pairs with p-
wave symmetry, the unit vector k pointing in the direc-
tion of the Fermi wave vector kF and

0 1

1 0
0 —i

i 0
1 0
0 —1

denoting the Pauli matrices.
It is convenient to normalize the energy in units of the

condensation energy fg of the bulk 8 phase, and the
length scale in units of the Ginzburg-Landau coherence
length goL, and to work with a set' of reduced p pa-
rameters p~

=p~/(p345+ 3p~2) reflecting the pressure
dependence of the phase diagram of superfluid He. At
the coexistence temperature T~~, of course, the conden-
sation energies of the bulk 8 phase and the bulk 2 phase
coincide. Consequently the p parameters fulfill the con-
straint 2p4+2p5=3pi+p3, and the ratio of the gap am-

plitudes Az and h~ turns out to be independent of any

P parameters: A~/Att = —', . Then the 1D Ginzburg-
Landau boundary-value problem to be solved for the
order-parameter components d~q(x) =U~i(x)+i V~i, (x) is

the following:

and

ti d+A '(d —C) =0, (la)

lim 9 d=0.
I
t-- (lb)

C=pid*tr(dd )+pqdtr(dd )+p3d d d

+P4dd td +P5dd d *. (2)

Here A denotes the diagonal matrix" A=diag t3, 1, 1}
while the matrix C denotes all the cubic terms in the
Ginzburg-Landau equations, weighted with their corre-
sponding p parameters:
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Near the A-B transition line either the bulk A phase or-
der parameter

Consequently, the A-phase order parameter in this new
frame is

d~ = ( -', ) 't'(j t+ i hatt) e w

or the bulk B-phase order parameter

dtt =e'~R(g, n)

(3a)

(3b)

d~ =e 'd~R (O, n)

(Pt+ iPtt) Sw

with

(6b)

B,d =|l„d+A '(d —C, ), (4)

fulfilling at time t =0 the initial condition d=d~ for
x ( 0 and d=dtt for x & 0 and also fulfilling the bound-
ary conditions lim~„~ ti d=0 for t &0. The matrix
C, now denotes all the cubic GL terms as defined in Eq.
(2) which correspond to a set of specially chosen P pa-
rameters favoring the A phase for x (0 and the B phase
for x &0. These x- and t-dependent P parameters un-

dergo a jump at x =0 which heals not too rapidly as t in-

creases to infinity; for example, working with the P pa-
rameters employed by Sauls and Serene' one has at the
tricritical point

solves the boundary-value problem (1).
In fact, I find that straightforward iteration of Eq. (1)

apparently always converges to those spatially homo-
geneous bulk solutions. To find spatially inhomogeneous
solutions to Eq. (1) with the properties lim„— d(x)
=d~ and lim„d(x) =dtt and with the A-8 phase
boundary pinned at x =0 the following procedure turned
out to be successful. Rather than attempting to solve the
Ginzburg-Landau (GL) equation (1) directly, I compute
solutions of the heat equation

P)+i'll =e (Pt+igtt)

and

w =R(0,n)w.

For a geometry with a planar interface described by a
normal unit vector x the components of the order param-
eter d~q(x) =U~q(x)+ i V&q(x) are no longer dependent on
the coordinates y and z. Consequently, an analysis of the
reflection and time-inversion symmetries of the order pa-
rameter' ' in the asymptotic regime shows that the
group fl, S~,KS„KS,S~} represents possible discrete
symmetries of the order parameter. Here, S = 1 —2m
em denotes reflection at a plane with normal vector m
and K means complex conjugation, an operation which is
identical to time inversion for triplet Cooper pairs.
Table I shows which of the order-parameter components
necessarily vanish as a result of each of those discrete
symmetries. Of course, inspection of Table I reveals im-
mediately that an order parameter having both sym-
metries, S~ and KS„ then only has three nonvanishing
real components and just two nonvanishing imaginary
components:

Pl = —0.288 —e(x, t)

P2 =0.513+e(x, t)

P3 =0.504 —e(x, t)

P4
——0.464 —e(x, t)

Ps = —0.643 —e(x, t)

(5)

U„O iV,
0 Uyy 0

iV, 0 U„
(7)

It turns out that the solutions of Eq. (1) with minimum
interfacial energy o~tt are, indeed, of this symmetry
type. The interfacial energy oztt (near the tricritical
point) is determined by subtraction of the free-energy

dg =1. (6a)

with e(x, t) =sgn(x)/(10+ t ').
In the limit t ~ the derivative B,d vanishes, of

course, and one obtains a nontrivial solution of the
Ginzburg-Landau boundary-value problem Eq. (1). To
solve the auxiliary problem Eq. (4) numerically, the
standard Crane-Nicolson discretizing scheme' for the
heat equation was implemented on a spatial grid with
lattice constants as small as 0.025(oL and up to 1000
grid points were taken into account. The resulting non-
linear diA'erence equations were then iterated until con-
vergence.

As explained in detail in Refs. 3 and 7 it is very con-
venient to choose the phase and also the orientation of
the spin frame of the asymptotic B-phase order parame-
ter such that it approaches a unit matrix for x

Symmetry Order parameter d =U+i V

'Uxx Uxz
'
Vxx Vxz

K5,Sy

0 Uyy

, Uzx

Uxx Uxy

Uyx Uyy

, 0 0
'Uxx

0 Uyy

, 0 Uy

0 +i
Uzz .

0
, Vzx
' 0 0

V„,
Vx.

'

0 +i 0 0 Vy,

U„,
0

Uy, +i
Uzz,

, Vzx Vzy

Vxy

Vyx 0

.Vzx

0
Vxz

0

TABLE I. Symmetry constraints for the order-parameter
components.
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density of the homogeneous bulk phase from the
Ginzburg-Landau free-energy density corresponding to
the solitonlike solution of Eq. (1) describing the A B-
phase boundary. After a partial integration and making
use of the fact that the spatially varying order parameter
solves Eq. (1), the formula

1

~AB 3 ~ dx [tr(d tC) —3] ( —', ) ' (Tfp, (8)

is derived, where C denotes all the cubic terms as given
in Eq. (2). Using the P parameters from Eq. (5) I ob-
tain the result

pl = —0.230, p2 =0.461, p3 =0.434,

P4 =0.384, Ps = —0.511,
(10)

I obtain the slightly diA'erent value crag =0.66(Tfg. Ob-
viously, this value is significantly lower than the value

cr~~ =0.77(Tfq obtained by Kaul and Kleinert. Varia-
tional estimates for oz~ would probably have been more
accurate with an order-parameter Ansatz respecting the
symmetries S~ and lc'S, as suggested by Eq. (7) and tak-
ing into account the possibility of a splitting of all the di-

1.5

in excellent agreement with the data of OsheroA and
Cross. '

It turns out that ozq is not very sensitive to variations
of the P parameters. For example, repeating the calcula-
tions for the order parameter d and the interfacial ener-

gy o~g with the same set of P parameters as employed
by Kaul and Kleinert in their variational calculation,
i.e. ,

agonal components of the order parameter at the inter-
face.

The numerical results of the Ginzburg-Landau
boundary-value problem Eq. (1) for the order parameter
with its components as given by Eq. (7) and with use of
the P parameters from Eq. (5) are presented in Fig. l.
In the limit I —~ the order parameter approaches
the A-phase order parameter as described in Eq. (6b)
with the orientation pt =x, ptt =i, and w =x. Conse-
quently, the vector 1=&t xptt is pointing perpendicular to
the interface normal vector I and the w vector (also
named d vector in the He-A literature) is pointing
parallel to the interface normal, always with the assump-
tion of the spin-frame orientation of Eqs. (6a) and (6b).
Then, of course, on the 8-phase side of the interface the
order parameter tends to the unit matrix for x

To summarize, one can say that the spin frame of the
A phase is oriented in such a way that x R(|1,n)w= 1.
This orientation of the asymptotic A phase gives minimal
interfacial energy and coincides exactly with the results
of Cross and Kaul and Kleinert, who carefully mini-
mized the various bending-energy contributions to the
A-phase order parameter in their variational calcula-
tions. In fact, upon solution of Eq. (4) and, for example,
use of the set of P parameters as given in Eq. (10) almost
every initial configuration for dz rapidly relaxed to this
A-phase order parameter or gauge-equivalent ones in the
limit x —~. I find, however, also a second solution of
Eq. (1) which for x —~ has an asymptotic A-phase
order parameter oriented like pt =i, ptt=x, w=z and
also a third one with the orientation pt =y, hatt =z, w =z.
These two other configurations probably correspond to
saddle-point solutions of the stationarity conditions Eq.
(1), the former configuration having the interfacial ener-

gy o~g = I 0(Tfq and the. latter cr~~ =0.76(Tf~.
In Fig. 2 the interfacial energy density o(x) = —,

'
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FIG. 1. The spatial variation of the nonvanishing order-

parameter components vs distance x from the 4-8 interface.
The unit of length x is goL as defined in Ref. 9. U,q denotes the

real part and Viz denotes the imaginary part of the complex or-

der parameter. For x ~ the bulk 8 phase and for x
the bulk 4 phase are approached as discussed in the text. The
origin at x =0 coincides with the point of maximum interfacial
energy.

I
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FIG. 2. The interfacial energy density a(x) of the A-8
phase boundary vs distance x corresponding to the order-
parameter components d~& Up+/'Vp as plotted ln Fig. 1. The
unit of length x is goL as defined in Ref. 9.
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FIG. 3. The spatial variation of the nonvanishing com-
ponents of the magnetic moment density x vs distance x from
the A-8 interface. The unit of length x is goL as defined in
Ref. 9.

xtr(dtC) —
1 and in Fig. 3 the nonvanishing com-

ponents of the interfacial magnetic-moment density
tr„(x) =le„,qd/gzi corresponding to the order-parameter
components of Fig. 1 are plotted versus distance x; as is
clearly seen, the "half width" A of the A-B phase bound-
ary is of order A —4(GL =3.1(T, a value which compares
favorably with the value employed by the authors of Ref.
4 in their theory of the Andreev-scattering-induced Ka-
pitza resistance.

An important implication of the nonvanishing imagi-
nary components V, and V, of the order parameter is
that the Tomasch wave numbers qT—. = (8 6*~

~~h

xiii*~~
—co ) '/ for quasiparticles traveling along the tra-

jectory R(t, k) =Ro+vFtk may split at the A-8 phase
boundary. Here A„=kidj„(R) denotes the components
of the local order parameter 6 as seen by those quasipar-
ticles flying in the direction k=kFg~kF with the energy
hco and the group velocity vF, the trajectory parameter t
measuring the "time of flight. " Note that for klly the
Tomasch wave numbers qT

—remain degenerate while for
kllz there is a substantial spin split. However, also for
kllx there exists a small spin split due to the finite v,
component of the order parameter.

Strictly speaking, therefore, a spatially constant
equal-spin pairing axis x, (k) for quasiparticles flying
through the A-B phase boundary ' does not exist. It
does exist, mathematically, for the trial order parameter
of Kaul and Kleinert and has been used for an elegant
simplification in the calculation of the Kapitza resis-
tance. Though, admittedly, the corotation of x, (k)

along the trajectory R(t, k) is a small effect in the
Ginzburg-Landau regime, because the order-parameter
component V, is small, experience from self-consistent
calculations of vortices in He-8 suggests (making use of
the full quasiclassical theory' ) that small nonunitary
components of the order parameter have a tendency to
grow at lower temperatures. ' Whether or not local
coupling of the spin channels of the Andreev equation
should be taken into account in a calculation of the Ka-
pitza resistance depends on the outcome of self-
consistent calculations of the order parameter at all tem-
peratures, which are presently under way.
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