Spatial Dependence of the Order Parameter of Superfluid ³He at the A-B Phase Boundary

N. Schopohl

Institut für Festkörperforschung der Kernforschungsanlage Jülich GmbH, D-5170 Jülich, Germany, and Institut Laue-Langevin, 38042 Grenoble Cedex, France (Received 28 October 1986)

Accurate solutions of the Ginzburg-Landau equations describing the *A-B* phase boundary for a planar interface between ³He-*A* and ³He-*B* are calculated near the tricritical pressure and classified in terms of simple discrete symmetries. The order-parameter components of the *A-B* phase boundary and the interfacial energy $\sigma_{AB}(T)$ deviate considerably from previous variational calculations.

PACS numbers: 67.50.-b

It is known that in the absence of a magnetic field the two superfluid phases A and B of ³He coexist at a particular temperature T_{AB} , which is a function of pressure.¹ Because the order parameters of the two superfluids are topologically inequivalent there necessarily forms a domain wall separating the A phase from the B phase.

In the following I assume that the A phase is on the left and the B phase is on the right side of this domain wall. The orientation of the order parameter in the A phase is described in terms of a pair of real orthogonal unit vectors $\hat{\phi}_{I}$ and $\hat{\phi}_{II}$ in orbital space and a third unit vector $\hat{\mathbf{w}}$ in spin space.² The physical meaning of $\hat{\mathbf{w}}$ is that it fixes the direction along which the triplet Cooper pairs are in the state of total spin $|S=1, m_S=0\rangle$ while the meaning of $\hat{\phi}_{I}$ and $\hat{\phi}_{II}$ is that their cross product $\hat{\mathbf{l}} = \hat{\phi}_{I} \times \hat{\phi}_{II}$ determines the direction along which the pairs are in a state of orbital angular momentum $|L=1, m_L=1\rangle$.

The order parameter in the *B* phase is characterized by the usual phase variable ϕ and a rotation matrix $R(\theta, \hat{\mathbf{n}})$.² In the bulk the nuclear-spin dipole interaction between the ³He particles breaks the spin-orbit symmetry and fixes the angle θ at the Leggett value $\theta = \arccos(-\frac{1}{4})$ in the *B* phase and also orients $\hat{\mathbf{l}}$ to be parallel to $\hat{\mathbf{w}}$ in the *A* phase.²

In the vicinity of the A-B phase boundary, however, within a layer of thickness smaller than the dipole coherence length $\xi_D \simeq 6 \ \mu m$, the bending energy dominates by far the dipole energy and the dipole effects on the local order-parameter components may then be taken into account only perturbatively.

Recently, Yip³ and Yip and Leggett⁴ have pointed out that the spatial dependence of the order parameter at the A-B phase boundary of superfluid ³He induces Andreev reflection of quasiparticles and therefore gives rise to a Kapitza resistance and also a friction force for the moving boundary.⁵ The exact spatial dependence of the superfluid order parameter at the A-B phase boundary is then of considerable interest. Following Cross⁶ and also Kaul and Kleinert,⁷ I apply Ginzburg-Landau theory⁸ to describe the energetics of the A-B phase boundary in superfluid ³He for temperature and pressure values near the polycritical point. With the assumption of a planar A-B interface oriented parallel to the y-z plane of the laboratory frame, the superfluid order parameter $\hat{\Delta} = \sum_{j,\lambda} \hat{\mathbf{k}}_j d_{j\lambda} \sigma_\lambda i \sigma_y$ depends on the x coordinate only. Consequently, the Ginzburg-Landau equations reduce to a set of coupled ordinary differential equations for the nine complex components $d_{j\lambda}(x) = U_{j\lambda}(x) + iV_{j\lambda}(x)$ of the order parameter $\hat{\Delta}(x)$. Here the nine elements $\hat{\mathbf{k}}_j \sigma_\lambda i \sigma_y$ with $j,\lambda \in \{x,y,z\}$ define a Cartesian basis to span the Hilbert space of triplet Cooper pairs with p-wave symmetry, the unit vector $\hat{\mathbf{k}}$ pointing in the direction of the Fermi wave vector \mathbf{k}_F and

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

denoting the Pauli matrices.

It is convenient to normalize the energy in units of the condensation energy f_B^c of the bulk *B* phase,⁸ and the length scale in units of the Ginzburg-Landau coherence length ξ_{GL} ,⁹ and to work with a set¹⁰ of reduced β parameters $\beta_j = \beta_j/(\beta_{345} + 3\beta_{12})$ reflecting the pressure dependence of the phase diagram of superfluid ³He. At the coexistence temperature T_{AB} , of course, the condensation energies of the bulk *B* phase and the bulk *A* phase coincide. Consequently the β parameters fulfill the constraint $2\beta_4 + 2\beta_5 = 3\beta_1 + \beta_3$, and the ratio of the gap amplitudes Δ_A and Δ_B turns out to be independent of any β parameters: $\Delta_A^2/\Delta_B^2 = \frac{3}{2}$. Then the 1D Ginzburg-Landau boundary-value problem to be solved for the order-parameter components $d_{j\lambda}(x) = U_{j\lambda}(x) + iV_{j\lambda}(x)$ is the following:

$$\partial_x^2 d + \Lambda^{-1} (d - C) = 0, \tag{1a}$$

and

$$\lim_{|x| \to \infty} \partial_x d = 0.$$
 (1b)

Here Λ denotes the diagonal matrix¹¹ Λ = diag {3,1,1} while the matrix *C* denotes all the cubic terms in the Ginzburg-Landau equations, weighted with their corresponding β parameters:

$$C = \hat{\beta}_1 d^* \operatorname{tr}(dd^{\mathsf{T}}) + \hat{\beta}_2 d \operatorname{tr}(dd^{\dagger}) + \hat{\beta}_3 d^* d^{\mathsf{T}} d$$
$$+ \hat{\beta}_4 dd^{\dagger} d + \hat{\beta}_5 dd^{\mathsf{T}} d^*.$$
(2)

Near the A-B transition line either the bulk A phase order parameter

$$d_{\mathcal{A}} = \left(\frac{3}{2}\right)^{1/2} (\hat{\boldsymbol{\phi}}_{\mathrm{I}} + i \hat{\boldsymbol{\phi}}_{\mathrm{II}}) \otimes \hat{\mathbf{w}}^{\mathrm{T}}$$
(3a)

or the bulk B-phase order parameter

$$d_R = e^{i\phi} R(\theta, \hat{n}) \tag{3b}$$

solves the boundary-value problem (1).

In fact, I find that straightforward iteration of Eq. (1) apparently always converges to those spatially homogeneous bulk solutions. To find spatially inhomogeneous solutions to Eq. (1) with the properties $\lim_{x\to -\infty} d(x) = d_A$ and $\lim_{x\to\infty} d(x) = d_B$ and with the *A*-*B* phase boundary pinned at $x \approx 0$ the following procedure turned out to be successful. Rather than attempting to solve the Ginzburg-Landau (GL) equation (1) directly, I compute solutions of the heat equation

$$\partial_t d = \partial_x^2 d + \Lambda^{-1} (d - C_t), \tag{4}$$

fulfilling at time t=0 the initial condition $d=d_A$ for x < 0 and $d=d_B$ for x > 0 and also fulfilling the boundary conditions $\lim_{|x|\to\infty} \partial_x d=0$ for t > 0. The matrix C_t now denotes all the cubic GL terms as defined in Eq. (2) which correspond to a set of specially chosen β parameters favoring the A phase for x < 0 and the B phase for x > 0. These x- and t-dependent β parameters undergo a jump at x=0 which heals not too rapidly as t increases to infinity; for example, working with the β parameters employed by Sauls and Serene¹² one has at the tricritical point

$$\hat{\beta}_{1} = -0.288 - \epsilon(x,t)$$

$$\hat{\beta}_{2} = 0.513 + \epsilon(x,t)$$

$$\hat{\beta}_{3} = 0.504 - \epsilon(x,t)$$

$$\hat{\beta}_{4} = 0.464 - \epsilon(x,t)$$

$$\hat{\beta}_{5} = -0.643 - \epsilon(x,t)$$
(5)

with $\epsilon(x,t) = \operatorname{sgn}(x)/(10+t^2)$.

In the limit $t \rightarrow \infty$ the derivative $\partial_t d$ vanishes, of course, and one obtains a nontrivial solution of the Ginzburg-Landau boundary-value problem Eq. (1). To solve the auxiliary problem Eq. (4) numerically, the standard Cranc-Nicolson discretizing scheme¹³ for the heat equation was implemented on a spatial grid with lattice constants as small as $0.025\xi_{GL}$ and up to 1000 grid points were taken into account. The resulting non-linear difference equations were then iterated until convergence.

As explained in detail in Refs. 3 and 7 it is very convenient to choose the phase and also the orientation of the spin frame of the asymptotic *B*-phase order parameter such that it approaches a unit matrix for $x \rightarrow \infty$:

$$\bar{d}_B = 1. \tag{6a}$$

Consequently, the A-phase order parameter in this new frame is

$$\tilde{d}_{A} = e^{-i\phi} d_{A} R^{\mathrm{T}}(\theta, \hat{\mathbf{n}})$$
$$= \frac{3}{2} {}^{1/2} (\tilde{\phi}_{\mathrm{I}} + i \tilde{\phi}_{\mathrm{II}}) \otimes \tilde{\mathbf{w}}^{\mathrm{T}}$$
(6b)

with

$$\tilde{\boldsymbol{\phi}}_{\mathrm{I}} + i \, \tilde{\boldsymbol{\phi}}_{\mathrm{II}} = e^{-i\phi} (\hat{\boldsymbol{\phi}}_{\mathrm{I}} + i \, \hat{\boldsymbol{\phi}}_{\mathrm{II}})$$

and

$$\tilde{\mathbf{w}} = R(\theta, \hat{\mathbf{n}})\hat{\mathbf{w}}$$

For a geometry with a planar interface described by a normal unit vector $\hat{\mathbf{x}}$ the components of the order parameter $d_{j\lambda}(x) = U_{j\lambda}(x) + iV_{j\lambda}(x)$ are no longer dependent on the coordinates y and z. Consequently, an analysis of the reflection and time-inversion symmetries of the order parameter^{14,15} in the asymptotic regime shows that the group $\{1, S_y, KS_z, KS_z, S_y\}$ represents possible discrete symmetries of the order parameter. Here, $S_m = 1 - 2\hat{\mathbf{m}}$ $\otimes \hat{\mathbf{m}}^{\mathrm{T}}$ denotes reflection at a plane with normal vector $\hat{\mathbf{m}}$ and K means complex conjugation, an operation which is identical to time inversion for triplet Cooper pairs. Table I shows which of the order-parameter components necessarily vanish as a result of each of those discrete symmetries. Of course, inspection of Table I reveals immediately that an order parameter having both symmetries, S_{ν} and KS_{z} , then only has three nonvanishing real components and just two nonvanishing imaginary components:

$$\begin{pmatrix} U_{xx} & 0 & iV_{xz} \\ 0 & U_{yy} & 0 \\ iV_{zx} & 0 & U_{zz} \end{pmatrix}.$$
 (7)

It turns out that the solutions of Eq. (1) with minimum interfacial energy σ_{AB} are, indeed, of this symmetry type. The interfacial energy σ_{AB} (near the tricritical point) is determined by subtraction of the free-energy

TABLE I. Symmetry constraints for the order-parameter components.

Symmetry	Order parameter $d = U + iV$
	$\begin{bmatrix} U_{xx} & 0 & U_{xz} \end{bmatrix} \begin{bmatrix} V_{xx} & 0 & V_{xz} \end{bmatrix}$
S_y	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{bmatrix} U_{zx} & 0 & U_{zz} \end{bmatrix} \begin{bmatrix} V_{zx} & 0 & V_{zz} \end{bmatrix}$
KSz	$\begin{bmatrix} U_{xx} & U_{xy} & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & V_{xz} \end{bmatrix}$
	$\begin{vmatrix} U_{yx} & U_{yy} & 0 \end{vmatrix} + i \begin{vmatrix} 0 & 0 & V_{yz} \end{vmatrix}$
	$\begin{bmatrix} 0 & 0 & U_{zz} \end{bmatrix} \begin{bmatrix} V_{zx} & V_{zy} & 0 \end{bmatrix}$
KS _z S _y	$\begin{pmatrix} U_{xx} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & V_{xy} & V_{xz} \end{pmatrix}$
	$\begin{vmatrix} 0 & U_{yy} & U_{yz} \end{vmatrix} + i \begin{vmatrix} V_{yx} & 0 & 0 \end{vmatrix}$
	$\begin{bmatrix} 0 & U_{zy} & U_{zz} \end{bmatrix} \begin{bmatrix} V_{zx} & 0 & 0 \end{bmatrix}$

density of the homogeneous bulk phase from the Ginzburg-Landau free-energy density corresponding to the solitonlike solution of Eq. (1) describing the A-B phase boundary. After a partial integration and making use of the fact that the spatially varying order parameter solves Eq. (1), the formula

$$\sigma_{AB} = \frac{1}{3} \int_{-\infty}^{\infty} dx \left[tr(d^{\dagger}C) - 3 \right] \left(\frac{3}{5} \right)^{1/2} \xi_T f_B^c, \tag{8}$$

is derived, where C denotes all the cubic terms as given in Eq. (2). Using the β parameters from Eq. (5) I obtain the result

$$\sigma_{AB} = 0.71 \xi_T f_B^c, \tag{9}$$

in excellent agreement with the data of Osheroff and $C {\rm ross.}^1$

It turns out that σ_{AB} is not very sensitive to variations of the β parameters. For example, repeating the calculations for the order parameter \hat{d} and the interfacial energy σ_{AB} with the same set of β parameters as employed by Kaul and Kleinert in their variational calculation,⁷ i.e.,

$$\hat{\beta}_1 = -0.230, \quad \hat{\beta}_2 = 0.461, \quad \hat{\beta}_3 = 0.434,$$

 $\hat{\beta}_4 = 0.384, \quad \hat{\beta}_5 = -0.511,$
(10)

I obtain the slightly different value $\sigma_{AB} = 0.66\xi_T f_B^c$. Obviously, this value is significantly lower than the value $\sigma_{AB} = 0.77\xi_T f_B^c$ obtained by Kaul and Kleinert.⁷ Variational estimates for σ_{AB} would probably have been more accurate with an order-parameter *Ansatz* respecting the symmetries S_y and KS_z as suggested by Eq. (7) and taking into account the possibility of a splitting of all the di-

FIG. 1. The spatial variation of the nonvanishing orderparameter components vs distance x from the A-B interface. The unit of length x is ξ_{GL} as defined in Ref. 9. U_{jk} denotes the real part and V_{jk} denotes the imaginary part of the complex order parameter. For $x \rightarrow \infty$ the bulk B phase and for $x \rightarrow -\infty$ the bulk A phase are approached as discussed in the text. The origin at x=0 coincides with the point of maximum interfacial energy.

agonal components of the order parameter at the interface.

The numerical results of the Ginzburg-Landau boundary-value problem Eq. (1) for the order parameter with its components as given by Eq. (7) and with use of the β parameters from Eq. (5) are presented in Fig. 1. In the limit $x \rightarrow -\infty$ the order parameter approaches the A-phase order parameter as described in Eq. (6b) with the orientation $\tilde{\phi}_I = \hat{x}$, $\tilde{\phi}_{II} = \hat{z}$, and $\tilde{w} = \hat{x}$. Consequently, the vector $\hat{I} = \tilde{\phi}_I \times \tilde{\phi}_{II}$ is pointing perpendicular to the interface normal vector \hat{x} and the \tilde{w} vector (also named \tilde{d} vector in the ³He-A literature) is pointing parallel to the interface normal, always with the assumption of the spin-frame orientation of Eqs. (6a) and (6b). Then, of course, on the B-phase side of the interface the order parameter tends to the unit matrix for $x \rightarrow \infty$.

To summarize, one can say that the spin frame of the A phase is oriented in such a way that $\hat{\mathbf{x}} \cdot R(\theta, \hat{\mathbf{n}})\hat{\mathbf{w}} = 1$. This orientation of the asymptotic A phase gives minimal interfacial energy and coincides exactly with the results of Cross⁶ and Kaul and Kleinert,⁷ who carefully minimized the various bending-energy contributions to the A-phase order parameter in their variational calculations. In fact, upon solution of Eq. (4) and, for example, use of the set of β parameters as given in Eq. (10) almost every initial configuration for d_A rapidly relaxed to this A-phase order parameter or gauge-equivalent ones in the limit $x \rightarrow -\infty$. I find, however, also a second solution of Eq. (1) which for $x \rightarrow -\infty$ has an asymptotic A-phase order parameter oriented like $\tilde{\phi}_{I} = \hat{z}$, $\tilde{\phi}_{II} = \hat{x}$, $\tilde{w} = \hat{z}$ and also a third one with the orientation $\tilde{\phi}_{I} = \hat{y}, \ \tilde{\phi}_{II} = \hat{z}, \ \tilde{w} = \hat{z}$. These two other configurations probably correspond to saddle-point solutions of the stationarity conditions Eq. (1), the former configuration having the interfacial energy $\sigma_{AB} = 1.0\xi_T f_B^c$ and the latter $\sigma_{AB} = 0.76\xi_T f_B^c$.

In Fig. 2 the interfacial energy density $\sigma(x) = \frac{1}{3}$

FIG. 2. The interfacial energy density $\sigma(x)$ of the *A-B* phase boundary vs distance x corresponding to the orderparameter components $d_{jk} = U_{jk} + iV_{jk}$ as plotted in Fig. 1. The unit of length x is ξ_{GL} as defined in Ref. 9.

FIG. 3. The spatial variation of the nonvanishing components of the magnetic moment density $\boldsymbol{\pi}$ vs distance x from the A-B interface. The unit of length x is ξ_{GL} as defined in Ref. 9.

×tr($d^{\dagger}C$) - 1 and in Fig. 3 the nonvanishing components of the interfacial magnetic-moment density $\pi_{\mu}(x) = i\epsilon_{\mu\nu\lambda}d_{j\nu}d_{j\lambda}^{*}$ corresponding to the order-parameter components of Fig. 1 are plotted versus distance x; as is clearly seen, the "half width" Λ of the *A-B* phase boundary is of order $\Lambda \sim 4\xi_{GL} \approx 3.1\xi_T$, a value which compares favorably with the value employed by the authors of Ref. 4 in their theory of the Andreev-scattering-induced Kapitza resistance.

An important implication of the nonvanishing imaginary components V_{xz} and V_{zx} of the order parameter is that the Tomasch wave numbers $q_T^{\pm} = (\Delta \cdot \Delta^* \pm ||\Delta \times i\Delta^*|| - \omega^2)^{1/2}$ for quasiparticles traveling along the trajectory $\mathbf{R}(t, \hat{\mathbf{k}}) = \mathbf{R}_0 + v_F t \hat{\mathbf{k}}$ may split at the *A-B* phase boundary. Here $\Delta_{\mu} = \hat{k}_j d_{j\mu}(\mathbf{R})$ denotes the components of the local order parameter Δ as seen by those quasiparticles flying in the direction $\hat{\mathbf{k}} = \mathbf{k}_F / ||\mathbf{k}_F||$ with the energy $\hbar \omega$ and the group velocity v_F , the trajectory parameter *t* measuring the "time of flight." Note that for $\hat{\mathbf{k}} \parallel \hat{\mathbf{y}}$ the Tomasch wave numbers q_T^{\pm} remain degenerate while for $\hat{\mathbf{k}} \parallel \hat{\mathbf{z}}$ there is a substantial spin split. However, also for $\hat{\mathbf{k}} \parallel \hat{\mathbf{x}}$ there exists a small spin split due to the finite v_{xz} component of the order parameter.

Strictly speaking, therefore, a spatially constant equal-spin pairing axis $\hat{\mathbf{x}}_s(\hat{\mathbf{k}})$ for quasiparticles flying through the *A-B* phase boundary¹⁶ does not exist. It does exist, mathematically, for the trial order parameter of Kaul and Kleinert^{4,7} and has been used for an elegant simplification in the calculation of the Kapitza resistance.^{3,4} Though, admittedly, the corotation of $\hat{\mathbf{x}}_s(\hat{\mathbf{k}})$ along the trajectory $\mathbf{R}(t, \hat{\mathbf{k}})$ is a small effect in the Ginzburg-Landau regime, because the order-parameter component V_{xz} is small, experience from self-consistent calculations of vortices in ³He-B suggests (making use of the full quasiclassical theory¹⁷) that small nonunitary components of the order parameter have a tendency to grow at lower temperatures.¹⁸ Whether or not *local* coupling of the spin channels of the Andreev equation should be taken into account in a calculation of the Kapitza resistance depends on the outcome of self-consistent calculations of the order parameter at all temperatures, which are presently under way.

I wish to thank G. Eilenberger, M. Liu, and G. Schön for stimulating discussions.

¹D. D. Osheroff and M. C. Cross, Phys. Rev. Lett. **38**, 905 (1977).

²See, for example, W. F. Brinkman and M. C. Cross, in *Progress in Low Temperature Physics*, edited by D. F. Brewer (North-Holland, Amsterdam, 1978), Vol. 7a, Chap. 2.

³S. Yip, Phys. Rev. B **32**, 2915 (1985).

⁴S. Yip and A. J. Leggett, Phys. Rev. Lett. 57, 345 (1986).

 5 D. S. Buchanan, G. W. Swift, and J. C. Wheatley, Phys. Rev. Lett. 57, 341 (1986).

⁶M. C. Cross, in *Quantum Fluids and Solids*, edited by S. B. Trickey, E. D. Adams, and J. W. Dufty (Plenum, New York, 1977).

 7 R. Kaul and H. Kleinert, J. Low Temp. Phys. **38**, 539 (1980).

 8 See, for example, L. J. Buchholtz and A. L. Fetter, Phys. Rev. B 15, 5225 (1977).

⁹Note that the unit of length in our calculation is $\xi_{GL} = (\frac{3}{5})^{1/2}\xi_T$, where $\xi_T = \xi_0(1 - T/T_c)^{-1/2}$ as used in Refs. 1, 6, and 7, and $\xi_0 \simeq 0.13\hbar v_F/k_BT_c$.

 10 E. Thuneberg, Phys. Rev. Lett. 56, 359 (1986), and private communication.

¹¹The weak-coupling values for the Frank constants of the gradient energy are used in this paper.

¹²J. A. Sauls and J. W. Serene, Phys. Rev. B 24, 183 (1981).

¹³See, for example, J. M. Ortega and W. G. Poole, Jr., *Introduction to Numerical Methods for Differential Equations* (Pitman, Marshfield, MA, 1981).

¹⁴M. M. Salomaa and G. E. Volovik, Phys. Rev. B **31**, 203 (1985).

¹⁵E. Thuneberg, Phys. Rev. B 33, 5124 (1986).

¹⁶Note that the interface normal vector in this work is $\hat{\mathbf{x}}$ while in Refs. 3 and 4 it is $\hat{\mathbf{z}}$.

¹⁷See, for example, J. W. Serene and D. Rainer, Phys. Rep. **101**, 221 (1983).

¹⁸N. Schopohl and E. Thuneberg, unpublished.