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Calculation of Exchange Frequencies in bcc 3He with the Path-Integral Monte Carlo Method
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The exchange frequency in crystal 'He is calculated from first principles with a combination of the
path-integral Monte Carlo method and a method used in classical statistical mechanics to determine
free-energy differences. The frequency of nearest-neighbor exchange at melting density is 0.46 mK, that
of triple exchange is 0.19 mK, and that of four-particle planar exchange is 0.27 mK. These exchange
frequencies are within 30% of the values obtained from the empirical multiple-exchange model and
agree with measurements. Many other types of high-order cyclic exchanges make significant contribu-
tions to thermodynamic properties, showing that He is more complex than previously thought.

PACS numbers: 67.80.Mg, 02.70.+d, 05.30.Fk

Crystal He at millikelvin temperatures is one of the
simplest and cleanest examples in nature of a lattice-spin
system. This simplicity arises because atomic helium is,
at those temperatures, practically a hard spherical atom
with very weak bonding to other helium atoms. Also,
thermal phonons and vacancies are not excited. Thus
the properties of the magnetic crystal result only from
atomic exchange which occurs very rarely, roughly every
10 atomic vibrations. Originally it was anticipated that
crystal He would be described by the antiferromagnetic
Heisenberg spin- —,

' model since one can show that if only
pairs of nearest-neighbor atoms exchange, the system in
continuous space can be mapped onto this spin model.
The experimental phase diagram is totally at variance
with this model: For example, the symmetry of the
ground state is diA'erent from that of the Heisenberg
model. To fit experimental data it is necessary to assume
that two-, three-, and four-atom exchanges are approxi-
mately equally frequent. This is known as the multiple-
exchange model. ' Since exchange of atoms is a tunnel-
ing process, one would expect the barriers for these
difterent processes to be, in general, difTerent and to have
diA'erent density dependences. It therefore seems im-
probable that the various frequencies have equal orders
of magnitude. The calculation of the exchange frequen-
cies from first principles is necessary for this model to be
finally verified.

To define the exchange frequencies and the lattice-spin
model, one assumes that most of the time the atoms are
close to lattice sites. If there are no ground-state vacan-
cies, there are N I ways of arranging the N atoms onto N
lattice sites. This degeneracy is broken by the exchange
of atoms. Suppose that we allow only two ways of ar-
ranging the N atoms onto the lattice sites which we will
denote as Z and PZ. Here P is a cyclic permutation of a
few atoms and Z is the vector of a perfect bcc lattice
Z = [z~,zq, . . . , z~]. Then the ground state is split into
two states po and p~ with even and odd symmetry and en-
ergies Ep and Ei. The frequency with which the system

oscillates from Z to PZ is 2Jp=E& Ep. This definition
applies to any permutation, but it is expected that only
for small cyclic exchanges will the frequency be
significant. Then for temperatures below 10 mK, the
system of spin- —, fermions is described by a lattice Ham-
iltonian acting only on the spins of the atoms:
gpJp( —1) P, where ( —1) is the parity of the permu-
tation and P is the spin permutation operator.

The exchange frequencies are difFicult to calculate
since the helium atoms have large zero-point motion and
correlation. An exchange of a pair of atoms necessarily
involves neighboring atoms moving out of the way, and
so it is really a collective process involving on the order
of twenty atoms. This explains qualitatively why the
frequencies of three- and four-atom exchange are similar
to that of two-atom exchange since those exchanges im-

pinge on neighboring atoms much less.
Consider the many-body density matrix for distin-

guishable particles:

p(R, R';p) =g„e "p„(R)p„(R'), (1)
where p= I/kT and R represents the 3N spatial coordi-
nates of the atoms. Again let us make the restriction
that the atoms must be near Z or PZ. Then for temper-
atures well below the Debye temperature only two states
will contribute to the expansion in Eq. (1). To deter-
mine the exchange frequency, consider the density ma-
trix taken between the perfect lattice and a permutation
of the perfect lattice, normalized by the diagonal density
matrix

Fp(P) = P ' 'P =tanh[Jp(P Pp)], (2—)
p(z, z;p)

where the second equality follows from symmetry prop-
erties and pp =In[&~(Z)/po(Z)]/Jp. If Fp(p) is calcu-
lated at two values of p, the exchange frequency can be
determined.

To evaluate these density matrices, M —
1 intermedi-

ate points Ri, R2, . . . , R~ —i are inserted by use of the
product property of density matrices giving

fdR ) dR~ )p(Z, R (, r)p(R (,Rz, r) —p(R~ (,PZ;r)—
Fp(P) =

fdR& dRM ~ p(Z, R~, r)p(Rt, Rz', r) p(R~ ~, Z;r)
(3)
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where z=p/M. The path-integral Monte Carlo method
is based on making M large enough so that an accurate
expression can be written down for p(R, R';z). We have
used for p(R, R';z) the product of two-atom density ma-
trices and its most important correction term, and
z=0.025/K where it was assumed that the helium atoms
interact with a pair potential derived from theory and
atom-atom scattering data. This high-temperature den-

sity matrix gives the low-temperature properties of liquid
and solid He to an accuracy of 0. 1 K/atom.

There has been considerable development in classical
statistical mechanics of methods for the computation of
such ratios with the Monte Carlo method and, as sug-
gested by one of us, such methods are useful for quan-
tum problems. First let us review the Metropolis Monte
Carlo method for sampling from an arbitrary probabili-
ty distribution function, m(s), where s represents the
state of some system. The sampling is achieved by the
construction of a Markovian random walk where at each
step of the walk the state of the system is moved to a
nearby state based on a transition probability T(s~ s ')
chosen so that detailed balance applies. This guarantees
that the probability of the walk visiting the state s is
zc(s). Rejections, which mean that the state is not al-

ways changed at each step, are used to satisfy the
detailed-balance condition.

To calculate Fl (p) we define the state of the walk to
consist not only of the path but also of a discrete variable
called a which takes two values, I or P. When a=I we
set R~ =Z and when o =P then Rsr =PZ; the paths ei-
ther close on themselves or are cross linked. Thus the
state is (R ~, R2, . . . , R~ ~, aj. Now the Metropolis
method is used to sample the distribution function,
rr(s) =p(Z, R~, z) p(RM-~, R~, z), allowing, of course,
for transitions between the two states I and P. Then the
average number of steps the walk spends in the state P
divided by the average number in the state I equals
F, (P).

The success of the method clearly depends on the abil-

ity to make many transitions between the two states.
Luckily this problem has been studied since it arises in

calculations of the lambda transition in Bose He. Our
procedure for making a transition from I to P is to
choose a section of the path as likely to allow an ex-
change. The total path is divided into three parts. The
coordinates R~, . . . , Rk are left unchanged. The coordi-
nates Rk+j, . . . , R~ are rejected into PRk+j, PR~
which by definition changes the state from I to P. Since
the Hamiltonian is symmetric this does not change rr(s).
Finally, a new section of the path is sampled to connect
Rk onto PRk+~. The coordinates of the atoms not in-
volved in the exchange are left unchanged while those
exchanging are chosen according to the bisection algo-
rithm where first the midpoint between Rk and PRk+ j is
sampled, then midpoints of the two resulting segments
are chosen, etc. , until the entire segment is sampled.
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FIG. l. Fp(p) for pair nearest-neighbor exchange . The dots
are for 16 atoms and the crosses are for 54 atoms. The solid
line represents the least-squares fit of Eq. (2) through the
crosses and the dashed line that through the dots. The slope is
the exchange frequency Jp and the intercept is the imaginary
time of the exchange Pp.

There is an optimal size, j, for this collective move of the
path from state I to P. If j is too small the springs of the
polymers will be stretched too much in going from Rk to
PRk +j If j is too large rejections will occur because of
the accumulation of small errors in the sampling pro-
cedures. The parameter pp gives the amount of imagi-
nary time needed for the exchange to take place and it is
about 0.3/K for most of the exchanges examined. We
have found that the optimal value of j is approximately
pp/(2z). For an exchange of four atoms the optimal
elementary Monte Carlo move from state I to P turns
out to involve changing 84 coordinates.

A similar method has been optimized for classical sta-
tistical mechanics by Bennett. The relative time the
system spends in the two states is equal to the rate for
making transitions from I to P divided by the reverse
rate. Thus it is not actually necessary to make the tran-
sitions from one state to the other but only necessary to
compute the rates that one could have made the transi-
tions. This combination of classical and quantum tech-
niques has the important property that its accuracy is in-

dependent of the actual tunneling frequency. The ex-
change frequency is expressed as the ratio of rates, not as
the very small diAerence between two eigenvalues. Com-
puter time is only weakly dependent on the number of
atoms in the system and on temperature. Our computer
runs have involved 16, 54, and 128 atoms. Calculations
have been performed down to 0.25 K but most are for
1 K.

The exchange frequency is given by the slope of Fp(p)
with respect to P [see Eq. (2) and Fig. 1]. One can
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TABLE I. Exchange frequencies at two densities. The semiempirical values from the
multiple-exchange model (MEM) are in the last column. ' The type of exchange is determined
(Ref. 10) by the set of p(p —1)/2 pair distances amongst the p atoms exchanging where 1

refers to a nearest-neighbor (nn) distance, 2 a next-nearest-neighbor (nnn), etc. The first set of
numbers specify the distances of adjacent atoms on the cycle, the next set the second neighbors,
etc.

Volume
(cm '/mole)

u type

2(l) nn

2(2) nnn
3(112) triplet
4(l;23) planar
4(l;22) folded
4(1122;31)
4(1212;11)
4(1212;14)
4(2;33) square
6(1 3 4 )
6(1 '523523;417)

20.07
J,(MC) (&K)

15 ( ~ 13%)

4 (~20%)
6 (+ 30%)

24. 12
Jp(MC) (mK)

0.46 ( ~ 7'%%uo)

0.065 (~ 10%)
0.19 (~ 10%)
0.27 (~ 10/o)
0.027 ( ~ 18%)
0.006 (~ 25%)
0.0005 ( ~ 45% )
0.011 (~ 30%)
0.0019 (~ 30%)
0.36 (~ 30%)
0.022 (~ 35%)

24. 12
Jp(MEM) (mK)

0.35

0.14
0.30

'D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, edited by K. Binder
(Springer-Verlag, New York, 1977).

determine the slope with a single calculation since the
exchange takes only a finite amount of imaginary time; it
is an instanton. Define the time T, when the exchange
occurs for a given path in the state P as the value in

imaginary time when the path is equidistant from Z and
PZ Now Eq. .(2) implies that T, can assume (p pp)
difTerent values; that is an extra degree of freedom the P
state has ihat the I state lacks. Suppose that we demand
that the path in the P state have its exchange time in the
middle of the path:

~ P/2 —T, ~
(P/2 where P is a con-

stant less than p —pp. Now that the exchange is

confined to a known portion of imaginary time in the
middle of the path T, can assume exactly p diA'erent

values and for this new distribution Fp(p) =tanh(pjp).
We have checked that this method gives the same value
of Jp.

We have calculated a variety of two-, three-, four-,
and six-particle exchange frequencies at two densities:
near melting (v =24.12 cm /mole), and near the high-
pressure limit of the bcc solid (v =20.07 cm3/mole).
These are given in Table I. We have tested that the ex-
change frequencies are not sensitive to p, p, the number
of particles, and time step i, to the 10% accuracy level of
our calculations. We find that pair exchange is most fre-
quent, but this is followed closely by planar four-atom
exchange and triplet exchange. Thus, the multiple-
exchange model is strongly supported. The semiempiri-
cal exchange frequencies, also in Table I, from the
multiple-exchange model'" are only diA'erent from the
Monte Carlo (MC) frequencies by 30%. We do not ex-
pect perfect agreement since, first, many other types of
exchanges are significant and, second, the semiempirical
frequencies are partly determined by approximate

mean-field calculations' on the lattice model. The order-
ing of exchange frequencies is correctly predicted by
high-density semiclassical calculations with a purely
repulsive interaction, but those calculations have not
yielded absolute magnitudes. Also we find that the larg-
est exchange frequencies scale with density as the
(20 ~ 1)th power, in agreement with experiment. '

The specific heat and the magnetic susceptibility at
zero magnetic field and at temperatures above the order-
ing transition can be expanded in powers of the inverse
temperature:

Ct ~e2p —e3p, X '~p ' —0+pB, (4)

where the coefficients are products of the exchange fre-
quencies. ' Also the value of the magnetic field when

He becomes ferromagnetic at zero temperature is a
linear combination of the exchange frequencies. The
calculation of the coefficients and magnetic field has
been done in two ways: first, by use of the three largest
frequencies, and second, by use of all frequencies in

Table I. The results, in Table II, show the importance of
many types of exchange in crystal He. Even though the
frequencies of some of the exchanges are small, they are
numerous. The most important frequencies are deter-
mined to better than 10%, but because of large cancella-
tions the resulting coefficients are very inaccurate. With
the present results we cannot rule out the possibility that
even more types of exchanges are important. It is also
possible that the interatomic potential is inaccurate. But
since our results give the measured properties of He
within the errors, it is unlikely that other proposed ex-
change mechanisms, such as ground-state vacancies or
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TABLE II. High-temperature thermodynamic-expansion
coefficients, as defined in Eq. (4) at melting (U =24. 12
cm'/mole) and the zero-temperature critical magnetic field for
the transition into the ferromagnetic phase. The first column
was obtained by our using only the three largest exchange pro-
cesses (nn, t, and planar), the second column uses all calculat-
ed frequencies.
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Property Three frequencies All frequencies Experiment'

8 (mK)
ep (mK')
e3 (mK')
8 (mK')
H, p (T)

0. 1 ~ 1.0
5.0 ~ 0.8
2.0 ~ 4.0
0.7 + 0.8
9.7 ~ 2. 1

—2.2 ~ 1.0
5.9 ~ 1.6

19.0 ~ 2.2

—1.7 ~ 0. 1

5.9
& 2.4

0.0+ 1

'Reference 11.

the coupling to phonons are relevant. The importance of
so many types of exchange complicates the already
dificult process of our determining from the exchange
Hamiltonian such properties as the transition tempera-
ture and spin-wave velocities.

In conclusion, a first-principles method of calculating
exchange frequencies in quantum crystals has been
developed and tested. This calculation has verified the
multiple-exchange model for He. Three types of ex-
change are dominant but many others produce
significant eA'ects showing that He is more complex
than previously thought. We anticipate that the develop-
ment of this accurate computational technique will lead
to a much deeper understanding of exchange in quantum
crystals.
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