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Mean-Field Theory of Spin-Glasses with Finite Coordination Number
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The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination
number is finite. The zero-temperature phase diagram is calculated and the relationship between the
spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to
graph optimization problems.
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The mean-field theory (MFT) of spin-glasses usually
refers to an infinite range -system of N spins; each one of
them is connected to the remaining N —

1 spins. ' In this
paper, the MFT of dilute spin-glasses is studied. If,
after dilution of the bonds, the average number of bonds
per spin remains of O(N), the dilution does not affect
the behavior of the system. If, however, the average
coordination number is finite, some new physics is ex-
pected to emerge. In particular there will be an interest-
ing interplay between the statistical-mechanical frustra-
tion and the geometric connectivity fluctuations. Also,
one might expect that some features of the diluted sys-
tem are closer to the realm of the short-range spin-glass
(SG) system.

Besides the relevance to the low-temperature proper-
ties of spin-glasses, the theory of dilute spin-glasses has
important applications in graph optimization problems.
Some of these problems can be mapped into random,
frustrated Ising models with highly diluted infinite-range
interactions. For these problems, mean-field theory
should yield exact results in the thermodynamic limit.

The MFT of dilute SG's has been previously systemat-
ically studied only in the neighborhood of the transition
temperature. However, some of the interesting proper-
ties of the system are revealed at low temperatures. In
fact, earlier treatments of the low-T phase failed to a."-
rive at a consistent theory which incorporates the all-
important frustration of the system. We present here a

where S; =+'1 (i =1, . . . , N), and the J;I's are infi
nite-ranged random interactions. Their probability dis-
tribution is

p (J; ) = (1 —c/N ) h (J; ) + (c/N )f(J; ). (2)

It describes a network of bonds which is highly diluted:
The average coordination number of each spin is c which
is taken to be on the order of 1. The distribution of the
surviving bonds is given by f(J~ )which is norm. alized to
unity. Because the average number of bonds is cN/2
(and not N /2) the scale of J;I must be on the order of 1

to achieve the appropriate thermodynamic limit.
Since there are no length scales in the problem, a

mean-field theory is expected to give an exact description
of the system in the thermodynamic limit (N ~).
Indeed, using the replica method, Viana and Bray have
shown that the average free energy per spin at tempera-
ture T =P ' can be expressed as

MFT of dilute spin-glasses which is appropriate for all
temperatures T and solve it in the limit of T 0. The
phase diagram and the properties of the various low- T
phases are discussed.

We consider an Ising system described by the Hamil-
tonian

Pf =—i QQ2+ g Q,tt+ g Q,tt„+. . . ——ln Tr&.exp( —PH) ——ln) dJf(J) cosh "(PJ), (3)

PH = —c at gQ S'+a2 g Q,ttS'S~+a3 g Q,ttrS'S~S "+ (4)
a&) g&P& y
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The indices a,P, y, . . . run from 1 to n. The variables 5'
represent n spins at the same site. The constants ak are

ak =Jr dJ f(J) tanh (PJ). (5)

The physical free energy is derived by minimization with
respect to (Q„Q,p, Q,p„, . . . ) and taking of the limit
n 0.

The new feature of Eq. (3) is the appearance of a
large number of order parameters, whereas in the MFT
of undiluted SG's [the Sherrington-Kirkpatrick (SK)
model'] only Q, and Q,~ appear. The present model has
been studied in Ref. 4 near the transition temperatures.
There, to leading order, one can neglect all but a few of
the order parameters which results, not surprisingly, in a
behavior qualitatively similar to that of the SK model.
Here we focus on the low-temperature regime where all
order parameters are of the same magnitude. The study
of the low-T limit is further complicated by the n 0
limit. Earlier attempts have shown that in frustrated
systems this limit has to be taken before the T 0 limit.

In this paper we solve the problem within the frame-
work of replica-symmetric theory. The order parameters
are assumed to be independent of the replica indices, i.e.,
Q Qf Q p Q2 Q pr Q3 etc. , for all replica indices.
The quantities Qk are simply the moments of the local
magnetizations, Qk =((m; )), where m; =(S;)T, where
(. . . )T is a thermal average, and ((. . .)) stands for an
average over the J;~. On the assumption of this struc-
ture, the limit n 0 of Eq. (3) can be taken explicitly,
yielding a free energy which is a function of all order pa-
rameters Qk. Instead of dealing directly with an infinite
number of order parameters, it is most useful to consider
the probability distribution of the local fields defined by
h;=tanh '(S;)T. Note that h; is not equivalent to the
exchange field g~ J~mj A. s T 0, T

~ h; ~
is the

minimum energy cost for changing the ith spin from its
ground state by an arbitrary excitation which involves
the flipping of a finite number of spins. The free energy
can be expressed as a functional of the averaged, local-
field distribution, P(h). Extremizing this free energy,
we have derived the following self-consistent equation for
the "order function" P(h):

OO OO

P(h) =e 'g~ exp —iyh+c „dJf(J) „P(x)dxexp[iy tanh '[tanh(PJ) tanhx] j .

Near the transition temperature the local fields are small, and hence one can expand the exponent in Eq. (6) in powers
of m(x) =tanhx. This leads to self-consistent equations for the lowest moments of m, which recover the results of Ref.
4. For general T, and arbitrary bond distribution f(J), Eq. (6) can be solved numerically. Here we specialize to the
particularly simple case of the discrete bond distribution,

f(J) =aB(J—1)+(1—a)8(J+I), (7)

in the limit of T 0. Since in this case the excitation energies are integers, P(h) must have, at zero T, the following
form:

P (h ) = (1 —Q) 8(h )+ g Pt+ 8(h —Pl ) + g Pt B(h +Pl ).
I 1 1

With the definitions P —=g&Pt , it is evident th—at P++P =Q, P+ P=m, where —
Q is the total fraction of

frozen spins, and m is the net magnetization (per spin) of the frozen spins. In taking the T 0 limit of Eq. (6) we
note that limT p~tanh '[tanh(PJ) tanhx]

~
is equal to P ~

J ) if (x ~

)P ) J ~
and to (x

~
if

~
x ) (P

~
J ). Substituting

Eq. (8) into the right-hand side of Eq. (6), one then finds

P(h) =e ' exp[ —iyh+cQ(x~e+' ~+x e '~~)],dy
(9)~ 275'

where

x~ = —,
' 4-(mlQ)(a ——,

' ). (10)
Expanding the integrand of Eq. (9) in powers of cQ and integrating over y, one obtains a series of 8 functions in h
which confirms the consistency of the Ansatz (8). Furthermore, summing all contributions to 8(h), and calculating the
difference between the contributions with positive h and contributions with negative h, one obtains the following equa-
tions for Q and m:

(12)

1 —
Q =e '&Ip(2cQ(x~x ) 'I'), (11)

m =cQe '~ Jr dt [Ip(2cQ[t(1 —t)] ' )+ [4t(1 —t)] ' I|(2cQ[t(1—t)] ' )],
where I„(x) are modified Bessel functions. Evaluating the free energy at low T, we find for the ground state energy-
per spin, E, the following expression:

E = —
—,
' c(1 —Q) +c(a —

—,
' )m —T J dhP(h)

~
h ~. (13)
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We now discuss a few consequences:
(i) Dilute ferromagnet, a=i.—In this case P =0,

and Eqs. (11) and (12) reduce to Q =m =P, where P is
the order parameter of the intinite-range percolation,
satisfying

p —cI' (i4)
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FIG. 1. The zero-T phase diagram: a is defined in Eq. (7);
PM, FM, and SG stand for paramagnetic, ferromagnetic, and
spin-glass phases. Inset: The percolation order parameter, P,
Eq. (14), and the SG order parameter, g, Eq. (15), as func-
tions of c/(1+c) in the SG phase.

It is nonzero above the percolation threshold c =1 and
approaches unity with c ~ as P —1 —e '. In addi-
tion, Eq. (9) yields the interesting result that PI+
=(cP)'e ' /i!. Note that by its definition, Eq. (8), PI
is (in this case of a =1) the average concentration of
spins that can be disconnected from the infinite cluster
by cutting only I bonds. For instance, NP&+ =Ncpe
is the average number of sites on the infinite cluster
which do not belong to its "backbone. " Equation (13)
yields E = —

2 c for all c which is just the average num-
ber of bonds per spin as expected.

(ii) Spin glass p-hase, a & 1.—For all a & I, there is a
range of c & 1 where a spin-glass phase exists, character-
ized by m =0, QAO. In this phase Eq. (11) reduces to

1
—g =e '~Io(cg). (is)

It is nonzero above c =1 with Q ——', (c —1), near c
—1+. As c ~, Q approaches unity only as a power
law, 1 —

Q —(2') 'i . Note that for all c ) 1, Q is less
than P as shown in the inset of Fig. 1. The difference
P —

Q represents the average concentration offrustrated
spins, i.e. , the concentration of spins on the infinite clus-
ter which can be flipped at T =0 by an excitation with
zero energy. The ratio (P —Q)/P has the value —,

'
in the

1 =(2a —1)ce '~[In(cg)+Ii(cg)], (i7)

Q being the SG order parameter. When 0 ( a ( —,', Eq.
(17) does not have a solution, implying that when the
concentration of negative bonds is higher than the posi-
tive ones the SG phase given by Eqs. (15) and ('16) ex-
ists at T=0 for all c. For a ~ 2, a ferromagnetic phase
appears above the critical c, and is characterized by
q&m&0.

limit of c 1+, implying that at the percolation thresh-
old one-third of the spins on the percolating cluster are
frustrated.

Another aspect of the frustration is given by the
ground-state energy. Evaluating Eq. (13) in the SG
phase, we obtain

Eso = —,
' c(1 —Q) ' —cge '&[Io(cg )+I i (cg) ].

(16)
This energy is always greater than —

—,
' c. In fact, the

quantity N(Eso+ 2 c)/2 is the total number of unsa
risifed bonds in the SG phase. Near the transition,
EsG+ 2 c= 8 (c —1)3.

The SG zero-T critical behavior near c =1 can be un-
derstood in terms of the geometrical properties of the
percolating cluster in many dimensions. According to
the "nodes and links" model, the typical loops on the in-
finite cluster are of linear size g, which is the percolation
correlation length g-(p —p, ) ". The total number of
loops in a system with linear size I. is proportional to
(L/g) =N(p —p, )", which implies that the number of
loops per site at the upper critical dimension, d=6, is
proportional to (p —p, ) . A finite fraction of the loops
are frustrated and since each frustrated loop contains
roughly one frustrated bond, the frustration energy must
be proportional to (p —p, ) . Note that for many dimen-
sions the finite clusters have a treelike structure with no
loops, and hence EsG= —

2 c below c =1. Most of the
spins which are on a frustrated loop are frustrated since
they can be flipped by the movement of the frustrated
bond along the loop. Furthermore, the flip of a spin will
cause the flipping of all the spins which lie on dangling
ends attached to it; hence most of the dangling ends at-
tached to the frustrated loops are frustrated. The total
mass of these dangling ends is proportional to PN and
therefore a finite fraction of the spins on the percolation
cluster are frustrated even at c=1+. Note that Eqs.
(15) and (16) are independent of the parameter a,
meaning that the properties of the SG phase at T =0 are
determined entirely by the geometry of the loops on the
infinite cluster and are therefore independent of the rela-
tive concentration of negative bonds. The extent of this
phase does depend on a as discribed below.

(iii) Ferromagnetic phase, 2 & a & 1.—Expanding
Eq. (12) in small m, one finds a transition from a SG
phase to a ferromagnetic phase which occurs at the criti-
cal value of c given by the equation
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The full phase diagram at T=O is shown in Fig. 1.
Note that although the undiluted, infinite-range antifer-
romagnet remains paramagnetic even at zero tempera-
ture, the dilute antiferromagnet (the present model with
a =0) freezes into a SG state for all c ) 1. Thus, any
arbitrarily weak dilution of the infinite-range antifer-
romagnet pins a large fraction of the frustrated bonds
and causes a freezing of the system at low T.

Many of the above qualitative results, including the
general form of the phase diagram, are valid also for
bond distributions other than Eq. (8). Perhaps the most
important difference is associated with the value of the
SG order parameter Q. By analysis of the contribution
of Eq. (6) to 8(h) it is straightforward to see that if the
bond distribution f(J1 ) is continuous, the equation for Q
is just 1 —

Q =exp( —cQ), which is the same as that of
the percolation order parameter P, Eq. (14). This is
indeed expected. In the continuous case the probability
that local fields on the percolating cluster vanish is zero,
and hence all the spins on the finite cluster are frozen at
T =0. It should also be noted that the critical properties
of the zero-T SG transition at c =1 depend on the form
of the bond distribution at the origin, similar to a one-
dimensional SG. If f(J 0) —J" then, by extending
the previous arguments, one expects that the energy
singularity is EsG —(c —1) +'

The present mean-field solution recovers exactly the
results of the replica-symmetric MFT of the SK model, '

in the limit of c ~, except for the scaling of the ex-
change by a factor I/Jc. For instance, as c ~, Eq.
(16) yields EsG/ Jc = —(2/tr) 'I, and at the SG-
ferromagnetic transition line, Eq. (17) yields Jc
x (a —

—,
' ) = jtr/2 which agrees with the SK results. The

replica-symmetric theory is unstable in the SK limit and
it might be unstable at all values of c ) 1. Indeed, Viana
and Bray found an instability to the breaking of replica
symmetry near the SG transition temperature for all
c & 1. It would be very interesting to understand the na-

ture of this symmetry breaking in the present model par-
ticularly at T=O. The present approach can be used to
study graph partitioning problems. This application
which involves extending our mean-field theory to in-
corporate the effects of external fields is currently being
investigated. Details of the calculations as well as the
derivation of Eq. (6) will be given elsewhere.
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Note added. —Order functions which are related to
our P(h), Eq. (6), have recently been introduced by
DeDominicis and Mottishaw and by Bray.
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