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Numerical Study of Vortex Reconnection
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With a Biot-Savart model of vortex filaments to provide initial conditions, a finite-difference scheme
for the incompressible Navier-Stokes equation is used in the region of closest approach of two vortex
rings. In the Navier-Stokes solutions, we see that the low pressure which develops between the interact-
ing vorticity regions causes the distortion of the initially circular vortex cross section and forces the rear-
rangement of vorticity on a convective time scale which is much faster than that estimated from viscous
transport.

PACS numbers: 47. 10.+g, 47.30.+s

There has been a great deal of interest in the dynamics
of vortex tubes. One well-known method of approach is
the representation of a tube as a space curve. The Biot-
Savart law is then used to generate the velocity field
which is used to convect the tube. In order to apply this
method assumptions are made about the core structure
of the tube. Usually it is assumed that the core remains
circular and that there is no axial flow inside the core,
although more elaborate models have been considered.
When these approximations are violated, experiments
have shown that the core dynamics become significant.
There have been several experiments reported in which
two vortex rings traveling in the same direction become
close enough to each other that in the region of closest
approach there is a reconnection of the vortex tubes and
the two rings become one contorted ring. This recon-
nection process cannot be captured by vortex methods
which use continuous filaments for a description of invis-
cid flow, since without viscosity the vortex tube retains
its identity for all time. In order for reconnection to
occur dissipative efI'ects must be considered.

In this work we study the dynamics of two closed vor-
tex tubes which are approaching each other, using an
Eulerian description of the incompressible Navier-Stokes
equation. Our approach is numerical. We have imple-
mented the fractional step method of Kim and Moin
which defines the velocity components on a staggered
grid. Each component of velocity at a given location on
the grid represents a cell-face mass flux. The pressure
field is defined midway between cell faces.

Guided by the experiments of Schatzle and Coles, we
start the simulation using the inviscid Lagrangean dy-
namics of the Biot-Savart law. The rings are initially
planar in the y-z plane and move in the positive x direc-
tion; the initial ring radius is unity, the core radius a is
0. 1, and we set the circulation I to 4n. Time is scaled in

units of I . The velocity at any point I is given by an in-
tegral over the filament arc length s of each ring,
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where the distance vector r=x —x(s), the unit tangent
vector t=dx(s)/ds, and the parameter a is 0.22 and
represents a uniform vorticity distribution in the ring
core. We have used two diA'erent models to determine
the filament core diameter: (1) local core radius from
local filament stretching to conserve vorticity volume, or
(2) dynamical equations for the core area which include
axial flow within the vortex tube. The axial flow can be
initiated by stretching which reduces the core radius and
thus increases the swirling motion, thereby creating a lo-
cal pressure minimum. The second model allows a step
change in core size along the filament.

The ring centers start 2.5 units apart along the y axis
and thus the initial closest separation distance is 0.5.
Figures 1 and 2 display perspective views of one ring at
time steps 150, 200, and 300. With an initial time step
of 0.00125, the vortex rings are starting to bend back-
wards in the region of closest approach after 150 time
steps and significant core overlap exists after 50 more
time steps. Our predictor-corrector scheme reduces the
time step by a factor of 8 during the interval from 150 to
200 and additional node points are inserted to maintain
the incremental arc length between nodes to be less than
0.75 of the local core radius. The overlap at step 200 is
such that the maximum node velocity is 10 times larger
than the initial value and the minimum separation dis-
tance between the two rings is 0.63o. ;„where cr;„ is
0.045. Distortion of the filament only occurs over an arc
which is less than 10% of the initial ring circumference.
Continuation of the problem essentially leaves the region
outside of the small arc interval frozen in time; i.e., the
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FIG. 1. Lagrangean calculation using vortex tubes with
round cross section to simulate interacting vortex rings; no axi-
al waves are included in this calculation. Perspective view of
one vortex ring during its interaction with a mirror-image ring
(not shown) on the left. The observer is above the path of the
approaching rings. The initial radius is unity, and the ring sep-
aration in the top view is 0.14. Time increases from top to bot-
tom; time steps 150, 200, and 300 are shown, the time values
being 0.1875, 0.2091, and 0.2134. The arcs are located at the
filament node points and reveal the insertion of new nodes with
stretching.

arc length within this region grows with a resulting
reduction in core size to conserve vorticity volume. At
time step 300, there appears a seemingly self-similar
growth pattern: We see nodules along the filament gen-
erated at points where the axial strain is zero. It is this
type of core dynamics which leads to a singularity in

finite time as described by Siggia and co-workers.
However, with so much overlap and the constraint of cir-
cular cross section, there is some doubt if this shrinkage
to zero core size is a physical result.

We have taken the Lagrangean inviscid results at time
step 150 at which point the separation between the two
rings is 0.14, which is 50% larger than the local core ra-
dius, and embedded this closest-approach region within a
unit cube using 32 node points to describe the pressure
field and the associated staggered grid for velocities in
order to start a viscous Navier-Stokes simulation. The
vortex filament tangent vectors and incremental arc
lengths were used to generate the vector potential at ap-
propriate locations so that the grid velocities are diver-
gence free. We subtract off a uniform translation veloci-
ty in the x direction. From the two time levels of the ve-
locity field in the moving reference frame, using a back-
ward Euler time derivative, we obtain the pressure gra-
dients from the finite-diAerence momentum equations.
Thus, the velocities and pressures generated by the Biot-
Savart law are used as initial conditions for the Navier-

FIG. 2. Perspective side view of the ring shown in Fig. 1.
Notice the decreasing core radius in the arc interval that has
the closest approach with the second ring. The nodular shape
may be forming a fractal object. Outside of the interaction re-
gion, the ring shape does not appear to change over the time
interval shown.

Stokes solution.
Using Schumann's estimate' for the combined con-

vective-diffusive stable time step, we integrate the
Navier-Stokes equation with a time step of 2x 10 and
with a Reynolds number (I/v) of 10 . We exploit the
fact that the outer ring region does not appear to move
during the evolution of the overlapping cores and keep
the cube boundary conditions of velocity and normal
pressure gradient constant. We find that the reconnec-
tion process is completed within a small enough time in-
terval so that these surface constraints for this volume
size are not a problem.

We exhibit the reconnection process given by the
Navier-Stokes solution by showing the calculated grid
vorticity in Fig. 3. The ring shown in Figs. 1 and 2 ap-
pears on the right side of Fig. 3. The time interval of the
Navier-Stokes calculation corresponds to the interval be-
tween steps 150 and 250 in the Biot-Savart calculation.
Instead of continual core collapse shown in Figs. 1 and 2,
we obtain a topological change in the vorticity field with
apparently little variation of core size along the newly
connected filaments. A side view of Fig. 3 (not shown)
indicates how the binormal eAect moves apart the two
newly connected filaments. In the experimental pictures
of Schatzle and Coles, this motion continues until these
regions are on opposite sides of the single vortex struc-
ture.

Low-pressure regions occur where the vorticity is larg-
est and we use pressure to observe the nature of the vert-
ical cross sections which pierce the two symmetry planes.
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FIG. 3. Navier-Stokes calculation of the reconnection of in-
teracting vortex tubes in the region of closest approach. The
view is along the x axis. Grid locations which have vorticity
magnitude greater than 0.6 of the maximum vorticity are
shown by drawing a scaled vorticity vector (maximum length is

—,', ). The times shown, from top to bottom, are 0.004, 0.012,
and 0.024 from the start of the Navier-Stokes calculation with
a constant time step of 2 x 10

In the x-y plane, the z vorticity appears as a dipole with
round cross sections when we first place the Lagrangean
vorticity onto the Navier-Stokes mesh. The pressure
minimum in the x-y plane gradually disappears as the z
vorticity is rotated into the y direction and we see the
formation of round pressure contours in the x-z symme-
try plane. At the end of the Navier-Stokes calculation,
the magnitude of y vorticity is 90% of the initial vorticity
in the z direction.

We also performed simulations at Reynolds numbers
of 10, 100, 1000, and 5000. The latter two do not ap-
pear to differ in contour plots of the solution, indicating
that we may have reached the inherent numerical
diffusion level in this scheme. With a Reynolds number
of 100, the reconnection still occurs although the vortici-
ty contours indicate more diffusion than in the higher
Reynolds number case. The simulation run at a Rey-
nolds number of 10 is completely different: Vorticity
diffusion and cancellation is so large that vorticity disap-
pears before it can be rotated to form reconnected tubes.
Thus, we estimate that when the viscous time scale is a
hundred or more times longer than the convective time
scale then tube reconnection occurs.

We have varied the initial spatial configuration for the
Navier-Stokes simulation and found that the duration of
the reconnection does depend on the local shape of the
interacting vortex tubes. Starting a Navier-Stokes cal-
culation with two perfect circles which are in the same
plane and separated in the plane by the distance found in
the deformed-ring case (0.15), we find after an elapsed
time of 0.048 that the reconnection is occurring but is
not complete. The fixed surface conditions become a lia-
bility if the calculational period is much longer than this
time interval. In the deformed case, the local tube cur-
vature is such that the two sections are moving towards
each other which is not the case in the two-perfect-ring
calculation just described. The reconnection may be
completely suppressed when the tubes are uniformly
separated. Pumir and Kerr ' have studied such a
configuration by using one vortex tube which contains
two signs of vorticity within its circular cross section.
The tube center line is initially displaced from a straight
line in a sinusodial fashion. They see vorticity forming
into sheets in the tube cross-sectional plane without any
obvious reconnection process. Thus, we conclude that
reconnection dynamics will be sensitive to variations in
the separation distance between sections of the tubes that
are near the closest-approach region. A minimum recon-
nection time may occur if the tube configuration maxim-
izes the velocity induced by tube sections that are far
away from the reconnection region upon tube sections
that become newly connected.

Returning to the description of our deformed-ring
case, the simulation with Reynolds number of 1000, we
infer a flow pattern by which the vortex tubes reconnect
by examining the z vorticity in the x-y symmetry plane.
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Near the z-y symmetry plane there is a line of node cells
in which dV/dy has a very large negative value, and both
dU/dx and dW/dz are positive and comparable in value.
Thus, the z component of vorticity is reduced by a
squeezing efI'ect which rotates the vorticity into another
direction. This squeezing motion is caused by static
pressure diff'erences which occurs when two vorticity re-
gions of opposite sign approach each other, since they
will induce a local maximum velocity between them-
selves, and hence a low pressure. The convective motion
which results from this low pressure should scale by vor-
ticity area and the amount of circulation contained
within that area and not by a viscous time scale. So the
time scale is o /I rather than a /v and in our choice of
parameters, these values are 10 and I.

Siggia, and more recently Siggia and Pumir, ' "have
shown that if one assumes that the cores remain circular
when two vortex tubes approach one another, then the
growth of the core due to viscosity cannot be maintained
against stretching along the filament axis. Thus, the
core area shrinks to zero in a finite time resulting in a
point singularity in the flow. The inclusion of axial
waves does not suppress this singular behavior. It is of
course impossible to make conclusive statements about
singular behavior from numerical simulation of the
Navier-Stokes equations, but it appears that the pressure
gradients and concomitant velocities arising from the
close approach of two tubes of oppositely signed vorticity
are sufficiently high to disrupt the tube and allow rear-
rangement of the vorticity on a convective time scale.

We speculate that reconnection may occur in a tur-
bulent flow whenever two opposite-signed vorticity re-
gions approach each other. From a preliminary calcula-
tion where the two rings had circulations in the ratio of
4:3, we see the stronger tube deform and undergo fission
into two regions and then the start of the reconnection
process between two opposite signed regions. In a calcu-
lation with 2:I circulation ratio, we see the weaker tube
becoming smeared around the stronger one; but away
from the plane of interaction, the weaker-tube vorticity
is enhanced by the axial stretching caused by the wind-
ing around the strong tube. A nonaxisymmetric spiral
pattern of vorticity wrapped around a stretching vortex is

the main ingredient in Lundgren s model which yields an
energy spectrum with a ——,'power range. ' We note,
however, that interactions with a circulation ratio of uni-

ty may be a common feature of turbulent How. This case
occurs, for example, whenever a single tube structure be-
comes bent into a U shape as is found in wall Aows where
horseshoe vortices are formed from transverse vorticity.
Moin et al. ' suggest that the legs of the horseshoe pinch
ofI' and form a vortex ring. Likewise, in the turbulent
mixing layer, there is steamwise vorticity which may
have the same evolution as in wall flows: Discrete vortex
structures normal to the flow are drawn out in the flow
direction and pinch off the trailing legs.
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