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Recursive Calculation of Dimensional Expansions for Two-Electron Atoms
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An efficient procedure is developed for calculation of perturbation expansions in 8=1/D, the recipro-
cal of the Cartesian dimensionality of space, for the ground-state energy of two-electron atoms. The
method uses recursion relations between moments of the coordinate operators. Results through tenth or-
der are presented for the helium atom. The perturbation series is divergent but Pade summation gives
accurate results.

PACS numbers: 31.20.Di

Perturbation theory parametrized by the Cartesian dimensionality D of space offers a promising new approach to
electronic structure calculations. The limit D ~ reduces to a classical electrostatic problem in which the electrons
take fixed positions. This configuration corresponds to the minimum of an eAective potential which includes centrifu-
gal terms arising from the D dependence as well as the Coulomb interactions. Excursions of the electrons about the
limiting rigid configuration are described by a perturbation expansion in powers of 8=1/D. For two-electron atoms,
closed analytic formulas have been obtained for the zeroth-order energy, at the 6=0 limit, and for the first-order per-
turbation, linear in 6', which corresponds to harmonic vibrations. ' Approximate values have been computed for the
leading anharmonic term in 6 and several further terms. However, the number of significant figures dwindles rapid-
ly (from six in second order to only one in fifth order) so that these results cannot be used with Pade summation or oth-
er techniques to construct accurate solutions. Here we present a recursive method which provides extremely accurate
perturbation coefficients to high order. We report results for helium through tenth order that are accurate to ten or
more significant figures.

The Schrodinger equation for the ground state of the two-electron atom can be written as

[—,' (a'/ar, '+a'/a—r,') G(r, ,r, ) a'/a0—+D [V,q(ri, rz, 0) —E]]+=0,
where G = —,

' (rl +r2 ) and V, tr is an eA'ective potential given by

V,~=— 1
——+ sin 0 — G(r i, r2)—1 6 8 . 2 1

4 D D2
1 1+—(r i +rz —2rir2cos0)

—&i2

'2 Z
(2)

j

The units of energy are atomic units multiplied by Z 6
and the wave function has been scaled by the square root
of the D-dimensional Jacobian. For atoms with Z) 1.228. . . , the minimum of V,g as 6 0 corresponds
to a symmetric configuration (at ri =rz, 0 ). The
zeroth-order approximation to the energy is Eo= V,tr(r
r, 0 ) and the first-order perturbation Ei is obtained
from second derivatives evaluated at the minimum.
Analytic expressions for r, 0, E0, and E~ in terms of
Z are given elsewhere.

We assume that the energy and wave function can be
expanded as

E = g e2„8"= g E„b"
n 0 n 0

x=6 ' '[-,' (ri+rz) —r ],

y=8 ' (0—0 ), z=($ ' [ —,
' (r, —r ) —r ].

We then expand G and V,g about 6=0 in the form

G = g a&"G, (x,z), V„=g S&"V, (x,y, z),
q 0 q 0

where Gq and Vq are polynomials in the displacement
coordinates. Substituting these expansions into Eq. (1)
and collecting terms according to powers of 6' yields a
set of differential equations,

and

pni2

n 0

respectively, with the normalization of + chosen such
that (+o!+o) =1 and (+o!+„„o)=0. It is convenient to
transform to the internal vibration coordinates r] ~r2
and to introduce dimensionality-scaled displacement

P
&p = g (Hq —eq+z)ep q =0,

q 0

where t..2„+~ =0, p =0, 1,2, . . . , and
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To solve Eq. (3) we generalize a procedure developed

by Ader for central-force problems in which recursion
relations are derived for the moments of the coordi-
nate operators, in our case the quantities
=&Co!x y "z '!+~). Equation (3) with p =0 is simply a
harmonic oscillator, which we solve by making the sub-
stitution

+o=Noexp[ —
2 (cortex +2co,exy+coeey +roriz ],

and collecting terms of like powers in the coordinates.
N0 is a normalization constant. For p & 0 we take ma-
trix elements of P~ with xjy"z '~o and thereby convert
each of the differential equations into a set of algebraic

jkiA)kI+gro~g j 1 k+1 (+2kr~ ro~oA)+1 k 1(=ClkI,P ' P P

! where ~jkI =jco„+2kr cozen+ 2lco77 and2
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equations. The Hamiltonian is Hermitian so that

&xiy"z 0o!Hqeq) =&Hq(x y z e )!%'p).

Thus, the differential operators need only act on +0 and
not on any of the +p) 0 which are much more compli-
cated. For this reason, the recursion relations for the
moments have a much simpler form than obtained, for
example, by generalization to two electrons of the recur-
sive method of Mlodinow and Shatz. We find

~jkl ~jkl +jkl ~jkl+ 2 j(j —1)Ai 2 k I+r k(k —1)A~k 2, +l(2l —1)A~k I (6)
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Here Pi~ki depends only on those moments A~&,1, for
which p' &p or j'+k'+21' & j+k+21, so that Eq. (5)
provides a recursive solution for the A~kl, starting with
the moments A~ki which are Gaussian integrals that can
be evaluated explicitly. If we set j=k =1=0 in Eq. (5)
then we have

g 2g
—2 + cy 2g

—2 (7)

This relation expresses the coefficients of the energy ex-
pansion in terms of the moments.

The A~z „, where "Z=n" represents the set j(j,k, l):
j+k+2l =n}, must be calculated in order of increasing

p, and for a given p, in order of increasing n. If the sum

p+n is odd then the moment is equal to zero. The mo-
ments that are needed to calculate E~, beyond those
needed for E~ 1, are

2p —3 2p —4 2p —S&x~-3,1, &Z~„, &Z~-9, 7,S, . . . ,

A 2P —
7

3i —6, 3i —8, 3i —10 ~ ~ ~ ~ ~ ~ Z 6p —6,6p —8,6p —10-

We have calculated the first eleven coefficients E„of
the perturbation series for Z=2 and list the values in

Table I. Our calculations were carried out on a Micro
VAX-II minicomputer. For the first ten terms the com-
putations were performed in quadruple precision (—33
decimal digits), and for the last term in double precision
(—16 decimal digits). Roundoff error was estimated by
comparison of the quadruple-precision and double-pre-
cision results for the first ten terms. The recursion rela-
tions seem to be only moderately unstable to roundoff er-
ror. The time required to calculate E„was about twice
that for E„1. With double precision the total time for
the calculation through tenth order was about 2 h. Qua-
druple precision slowed the computation considerably.
The calculation was stopped at E10 because beyond that
some of the moments become larger than the maximum
allowed value of a double-precision constant, about 10

A major obstacle to use of dimensional perturbation
theory with Coulomb potentials is the poor convergence
of the 6 series. For example, the ground-state energy of
the one-electron atom is given by EH = —2(1 —8)
The expansion in 6 does converge at 6= —,', but only
rather slowly due to the presence of the second-order
pole at 6=1. In Fig. 1 we compare partial sums for the
hydrogenic case with those for helium, which exhibit be-
havior typical of a divergent asymptotic expansion. For
helium the energy is again singular at 6=1, where it has
a second-order pole and a confluent first-order pole.
The effect of these poles can be removed by our writing
the series in the form

TABLE I. Coefficients of the 6 series for helium. Units are
atomic units times Z . Number in parentheses gives power of
10 to be included in the coefficient.

0
1

2
3
4
5
6
7
8
9

10

En

—0.273 776 914 112772 414 745 516 871 119506
—0.605 759 194836 364 666 736 140463 770 836
—0.886 218 378 983 331 935 295 531 457 592 580
—0.139006372 818 208 166 137 138 749 181 895
—0.543 672 043 287 805 001 297 034 059 420 4
—0.827 394 676 588 397 342 542 587 754 995
+0.131 269 893 398 517 115348 441 012 84
+0.101 260076 492 362 399 786 146 586 07
—0.433 338 867 474 867 247 981 893 617 39
+0.142 144 642 644 792 873 543 602 734 89
—0.443 814 218 45

(1)
(1)
(1)
(2)
(1)
(2)
(3)
(s)
(6)
(8)
(9)

(1 —g) ' (1 —6)

where E„=E„—(n+1)a 2
—a i, in units of a.u. times

Z 6 . This improves the asymptotic convergence of the
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120—
TABLE II. Residues and energy for Z=2 from Pade ap-

proximants of 8' series of order n. [1V/Ã], [N/iV+11 sequence.
Approximants in parentheses do not accurately reAect the
singularity structure (see Ref. 11). Units are a.u. times Z'.

CD

O)
o 80
O

E

—60'
L-
O
CL

i4O-O

O

O

1

2

3
4
5

6
7

8
9

10
Exact

—3.47698
—3.046 52
—3.277 88
—3.14702
—3.170 19
—3.146 74
—3.204 68
—3.16606

(—2.973 64)
—3.16497
—3 15539'

0.938 80
0.163 78
0.608 21
0.307 93
0.370 90
0.307 45
0.457 42
0.347 11

(—0.73797)
0.344 57
0.31645'

—0.736 646
—0.721 896
—0.727 789
—0.725 665
—0.725 868

(—0.725 658)
—0.726 242
—0.725 981
—0.725 758
—0.725 969
—0.725 931

0~O

20—
'From variational calculation of Ref. 12.
From variational calculation of Ref. 13.

first few terms but eventually the series still diverges.
We employ Pade summation' to calculate the resi-

dues a-2 and a —
1 and then to sum Eq. (8). The resi-

dues can be expressed in terms of the perturbation ex-
pansion according to

a ~
= lim (1 —6) E(6), (9a)

a 1
= lim (1 —6) [E(6)—a —2(1 —6) l. (9b)

We expand Eqs. (9) in 8 and then calculate the residues
from Pade approximants evaluated at 6=1. Our results
for the residues and the energy at 8= —,

' from the
[N/N], [N/N+1] Pade sequence are shown in Table II
and compared with exact values. ' ' The Pade approxi-
mants are apparently convergent although the rate of
convergence is somewhat uneven. " The result from
[5/5] agrees with the essentially exact energy of Pek-
eris' to 0.005%. The locations of the poles and zeros of
the approximants confirm a conjecture that the energy
as a function of 6' has an infinite sequence of poles on the
negative real axis. These poles approach an essential
singularity at 6=0 and so the radius of convergence is
zero. We will discuss elsewhere'' further aspects of the
singularity analysis.

The accuracy of our result for the helium ground state

j I I i

2 3 4 5 6 7
Order of perturbation, n

FIG. 1. Partial sums of dimensional expansions of order n,
expressed as percentage of the exact energy. Points connected
by solid curves show results for helium ground state (solid cir-
cles; Z =2, D =3) or the (2p) P doubly excited state (open
circles; equivalent to D =5 ground state). Dashed curves show
results for the hydrogenic limit (Z ~),

is about the same as that obtained from configuration-
interaction calculations. ' ' Of course, for smaller 6 the
divergence is less strong (as illustrated in Fig. 1) and
more accurate results are obtained. The five-dimensional
ground state is degenerate with the doubly excited
(2p) P state in three dimensions. ' Evaluating the
[5/5] Pade approximant at 8= —,

' gives E =0.71050049
a.u. , which divers from the exact value ' by only
0.00004%. This is the only such interdimensional degen-
eracy known for the two-electron atom. '

The recursive method presented here can be applied
with only slight modification to the Hartree-I. ock ap-
proximation and may thereby provide invaluable infor-
mation about the dimension dependence of electron cor-
relation. It is also straightforward to treat excited states
with total angular momentum; these correspond to
higher eigenvalues for electron oscillations in the same
eftective potential used for the ground state. Applica-
tions to states with nonzero angular momentum or to
many-electron systems appear feasible, but require de-
velopment of a reduced equation analogous to Eq. (1) or
some equivalent. Although extremely accurate results
for two-electron atoms have already been obtained from
variational calculations' and from the 1/Z perturbation
expansion, ' ' both those methods become prohibitively
difficult for many-electron systems. Dimensional pertur-
bation theory has the virtue that the zeroth-order
effective potential includes all the interactions, electron
repulsion as well as nuclear attraction. The method thus
is not handicapped by the number or magnitude of the
interactions but rather is governed by the dimension
dependence. This may enable dimensional perturbation
theory to reduce the prevalent reliance on arduous
configuration-interaction calculations of the correlation
error.
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