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Lower Bound on the Neutron Electric Dipole Moment in Models with Spontaneous CI'
Nonconservation in Scalar Exchanges
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We deduce a lower limit on the neutron electric dipole moment in the Weinberg Ansatz for CP non-
conservation. The resulting number is comparable to the existing experimental upper limit; this Ansatz
will therefore be critically tested by the next round of experiments using ultracold neutrons.
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A nonvanishing electric dipole moment for the neu-
tron, d~, would represent the first direct observation of a
microscopic violation of time-reversal invariance. In the
SU(3) ig1 SU(2) igi U(1) standard model one predicts,
however, very tiny values: d~ & 10 e cm. Instanton
effects could produce much larger numbers; yet once a
Peccei-Quinn symmetry is invoked to obtain a natural
solution to the strong CP problem, one again finds

d~ (10 e cm.
Much larger predictions for d~ are obtained when us-

ing the Weinberg Ansatz' for CP nonconservation as
noted by several authors: The estimates range typically
from 10 to 10 e cm. Experimentally the follow-
ing bounds have been obtained:

( —2.0~ 1.0) x10 e cm Ref. 3,

( —1.8+ 2.9) &&10 e cm Ref. 4.

It is expected that the experimental sensitivity will

reach the 10 -e cm level in the near future. Motivated
by these exciting prospects we have reexamined as care-

fully as possible the prediction on d~ as it is obtained in

the Weinberg Ansatz. Our treatment is very similar to
that of Cheng; yet we have analyzed the long-distance
eAects in considerably more detail than has been done
before and have specifically included top-quark contribu-
tions as well as QCD radiative corrections. Our results
based on all these considerations are presented in Fig. l.
In short, dz indeed cannot be significantly smaller than
10 e cm; for most of the allowed range in the model
parameters, d~ actually exceeds 10 e cm substantial-
ly. The next round of measurements, therefore, has to
reveal a nonvanishing value for d~ if the Weinberg
mechanism represents the major source of CP nonconser-
vation.

There are three doublets of Higgs fields in addition to
the three families of quarks and leptons and the gauge
bosons. CP nonconservation occurs spontaneously; thus
the Kobayashi-Maskava (KM) matrix is orthogonal and
all CP asymmetries can be traced back to complex vacu-
um expectation values of Higgs fields that enter the Yu-
kawa couplings after a redefinition of the Higgs fields:

3
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with H; denoting the (charged) Higgs fields and U and D the three families of quarks with diagonal mass matrices MU
and MD, respectively: U=(u, c, t); D =(d, s, b); K is the KM matrix.

It is the relative phase between a and P that drives CP asymmetries; the range of allowed values for Ima P is derived
from data on e and |..'. One finds the general expressions
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SD (LD) stands for short (long) distance dynamics.
In the Weinberg Ansatz it was found that

((2g. (5) I O
—24

I

i Lower
Limit

This leads to e'/e ——0.05, a number clearly inconsistent
with experimental bounds, unless chiral symmetry intro-
duces a sufficiently strong suppression to yield

I2(l «1(m/I —D) I

We assume this to happen —otherwise the model is al-
ready ruled out —and therefore read oA'

IO 25

Ref. I I
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In this model e is thus produced mainly by long-distance —IO

dynamics; therefore they have to be studied very careful-
ly.

Lower limit on the neutron electric dipole moment.SU 3) symmetry together with current algebra implies
the phases of (2n, I=OIHIK ), (x IHIK ), and

(qs I H I K ) to be equal; in the Wu-Yang phase convention the 2n', x, and rLs contributions to (Mi2)LD are therefore
purely real. Im(Mi2)Ln must then be produced mainly by the K qo K transition, qo being the SU(3)-singlet
component in the nonet of pseudoscalar mesons:

where
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We have used as representation for the pseudoscalar wave functions':

I» =Xp
I
(uu+dd)/~2+ Yp I ss)+Zr I G&, P = g, g'; (9)

I G) denotes an additional SU(3)-singlet component, such as a glueball.

Fquation (8) contains three types of parameters —4'P, Ypl; p; go—which will be discussed in turn.

(i) A comprehensive analysis of decays involving rl and rl' in the initial or final state leads to the conservative

bounds'

0.6 ~ X„~0.85, 0.55 ~ —Y„~0.95, 0.3 ~ X„.~ 0.6, 0.55 ~ Y„»0.85.

A very recent reanalysis of Mark III data yields'

=0.81 ~ 0.04 Y = —0.58 ~ 0.04 X ~ =0.58 ~ 0.04 Y = —0.81 ~ 0.04.

(10)

These numbers are quite consistent with an q-rl' mixing angle 8=(—19 ~2)' as predicted by a I/N treatment of
QCD. ' However, there is still room for a sizable glueball component in the rl' wave function.

(ii) In the next step one obtains the parameter p by solving

~(K,—yy) =(K, I H
I
~')~ (~'- yy),

w(r- yy)
mx2 —m' 3 p „„,A(zo yy) mx2 —mp'

x ~~ —J2Yp —2J2p(J2Xp+ Yp)] . (12)

The relative sign of the amplitudes A(q yy) and A(g' yy) is taken to be positive as predicted by the quark model.
The quark model actually predicts p=1. We have found this to hold to within a factor of 2 for the set of parameters
that give the lower limit on d~. A note of caution is in order here: The obtaining of a value for p in this way and sub-
sequent use of it in a CP-nonconserving matrix element represents a reasonable, yet not rigorous, procedure.
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(iii) The remaining task consists of computing go in the Weinberg Ansatz .One-loop diagrams involving Higgs-boson
exchange yield the CP-odd transition operator '

X —=ifdcr"'(I —yq)t "sF„,+H.c.,

where F„,denotes the gluon field-strength tensor and

(13)

, a p m,2
'

f 2
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where G(x) = —[ —,
' + I/(1 —x)+1/(1 —x) Inx];

treatment yields

2 2
'

m, m
2 gtKtsKtd G

2mg mH
(14)

and rid denote QCD radiative corrections; a leading-logarithm

a, (mg')
gg a, (p')

—11/6b
a, (mg)

8/b

a, (p02)
Q=c, t; b =11—

—,
'

nF (15)

p denotes the normalization or infrared cut-oA scale. Forming the matrix element will in principle lead to a compen-

sating dependence on p; in practice, however, an uncertainty is thus introduced since the models used to evaluate the

matrix elements do not exhibit the p dependence explicitly. In this case the p dependence is extremely mild because of
the tiny exponent I/6b and we use 11,—3.2, rt, —1.2 for m, —40 GeV, MH —100-500 GeV.

Then one has

(It'I Z-
I qo) = —2(-') '"p&z'

I
&-

I
~') = —2( 31 ) '"pf*A (16)

and therefore

Im Ax„
(z'IH
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Inserting (17) into (8) and solving for Imf we find

9 /PRAM ~ I (1 —4p)Xp —(1+2p) Yp
—(I/W2) (1+8p)Xp Yp

Imf = e —,F=+
fp'l~ mp

Equation (18) together with (14) allows us, finally, to determine Ima*p for given values of MH, M, ; for Ax. we use

the bag-model result' Ax =0.4 (GeV) .
In the nonrelativistic approximation d~ is simply expressed in terms of dd and d„, the electric dipole moments of

down and up quarks:

djv = —,
' (4dd —d„).

The one-diagrams lead to (since d„((dd)

with

2242GFe m, md

18m mH
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mH2

m 2
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the inequalities

(20)
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X
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j, and j, are the radiative QCD corrections. In the
leading-logarithmic approximation one finds

4/3b
a, (mg')

a, (p')
a, (mg)

8jb

a, (mH2)

and we therefore use g, —2.5-3, qt —0.7-0.9 in the
same spirit as expressed after Eq. (15).

It turns out that the minimum of d~ is obtained by
minimizing the t-quark contribution. This occurs when

m, ~ 23 GeV, E,d ~ 0.001 (22)

are saturated. The former follows from DESY PETRA
data, the latter from the unitarity of the KM matrix (as-
suming there are only three families). The use of K,d =0
will actually increase the value of d~.

The resulting lower bound for d~ has only a weak
dependence on MH.. The variation is at most 20% in the
range 10 GeV ~ MH ~ 500 GeV. In our evaluation we
have set MH =500 GeV.

In many computations of this type, one encounters
large cancellations between m and g, g' contributions,
which amplify uncertainties introduced by, for example,
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SU(3) breaking and chiral symmetry breaking. In Eq.
(8), we are spared from this possibility since only tl and
tI' contribute. In Eq. (12), we have taken the sym-
metry-breaking effect into account by introducing

1+0.17,

which was computed by Donoghue, Holstein, and Lin. '

In principle, the same correction factor should be incor-
porated in Eqs. (16) and (18). Here, the uncertainty
comes in as an overall multiplicative correction and can
be treated together with the uncertainty in A~ . The
main uncertainty is due to the procedure by which we
have determined p. We are confident that a further
reduction of the lower bound by a factor of 3 reflects
these uncertainties sufficiently. This has been done in

Fig. I which shows our findings. However, because of
the caveat stated above, we do not pretend to have de-
duced a rigorous lower bound. (In principle, there could
also be cancellations between different scalar exchanges;
yet a scan of the parameter space shows this to be a very
unlikely occurrence. )

As stated in the beginning the experimental sensitivity
for d~ is expected to reach the 10 -e cm level soon.
These measurements will have to reveal a nonvanishing
value for de if the Weinberg Ansatz describes the major
source of CP nonconservation. Otherwise this model
would clearly be ruled out as a significant contributor to
|.. Two further notes in passing:

(i) The 9 parameter is calculable in this model. It
vanishes naturally on the tree level; yet on the one-loop
level one finds' 8(1-loop) —10 which is much too
large thereby creating a pronounced need for a Peccei-
Quinn symmetry.

(ii) The presence of scalar couplings produces a trans-
verse polarization of muons in K+ p+ vx decays. Yet
we find Pol(p) —10 . It appears hopeless to observe
such a tiny effect, however important it would be.
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