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We study theoretically the transmission of radiation through superlattices of finite length, where the
dielectric constant of one film in each unit cell contains a term linear in the local field intensity. When
such a system is illuminated with radiation with frequency in a stop gap, increasing power can switch it
from a state with low transmissivity to a state with transmissivity of unity. Gap solitons play a key role

in the phenomenon.

PACS numbers: 78.20.Dj, 73.90.+f

Superlattices are fascinating because the structures
exhibit collective properties not shared by either constit-
uent, and these characteristics can be controlled through
variation of the structural parameters. One example is
provided by the propagation of electromagnetic radiation
through superlattices, normal to the interfaces. The
dielectric constant varies in a stepwise manner as one
moves down the structure, and thus stop gaps appear, in
a manner familiar from the theory of wave propagation
in periodic structures. If a superlattice is illuminated
with radiation within a stop gap, the envelope of the field
amplitude decays exponentially with distance down the
structure, and the transmissivity of a structure of finite
length is exponentially small.

We have studied theoretically transmission of stop-gap
radiation (plane polarized) in a finite superlattice, with
one film in each unit cell endowed with a (real) dielec-
tric constant that depends on the local field intensity,
e=e@[1+1|E(z)|?]. The motivation is the following.
With parameters arranged suitably, increasing power
should close the gap partially, and the system may
switch to a transmitting state at powers where the gap
closes sufficiently to allow a band edge to move past the
frequency of illumination. We expect bistability with
origin in this mechanism.

In Fig. 1(a), we show the transmissivity of a model su-
perlattice, calculated as described below, as a function of
incident power. Indeed, we see instabilities, as evidenced
by the multivalued nature of the transmissivity, but these
striking results cannot be explained by the mechanism
just described. The incident power is far too low to close
the gap sufficiently, in the regime where the transmission
coefficient is multivalued. At points P, and P, to within
the accuracy of our calculation, the transmissivity is
identically unity, while from the mechanism just outlined
one expects an impedance mismatch to remain. The re-
sults remind one of the phenomenon of self-induced
transparency,! though here the stop gap at low power
has origin in a geometrical resonance between the radia-
tion wavelength and structural geometry, rather than
resonant response to its frequency.

The frequency used in the calculations in Fig. 1(a) lies
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FIG. 1. (a) The transmissivity as a function of laser power,
for a model superlattice with twenty unit cells. The parameter
is L =AE§, with E, the strength of the incident field. We have
dy=d;=0.125 in units of the vacuum wavelength, and
£{® =225, £§ =4.50. The heavy line is the transmissivity in
the highly reflecting state. This is in the range 10 ~* for the
example considered, and thus cannot be shown as finite on the
graph. The calculation was not carried beyond A > 0.075.
Inset: The linear dispersion relation in the vicinity of the
stop band considered; the dimensionless frequency is
Q =we{®2(d;+d,)/c, with o the frequency. The lower band
edge is located at © =0.74x, and the transmissivity is calculat-
ed for 0 =0.75x. The arrow marked a in the inset indicates
this frequency. (b) The field intensity, | E(z) |2, in the super-
lattice at point P, measured in units of £4. The value of x
here is —0.004. The incident wave propagates from left to
right, and distance is measured in vacuum wavelengths.
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near the bottom of the stop gap [point @ in the inset],
and here we find a low-power transmission resonance
only for A <0. For frequencies near the top of the gap,
as at point b in the inset, we require A > 0 to realize such
behavior.

Insight into the origin of the transmission resonance is
provided by Fig. 1(b), where we plot the square of the
electric field, | E(z) |2, in the structure at point P;. The
electric field is measured in units of Eo, the incident
field, and A=A|Eo|2 At the transmission resonance,
the incident electric field couples to a solitonlike object
which resides as a static entity in the center of the struc-
ture. We have explored the transmissivity for various
frequencies within the gap, near either gap edge; we al-
ways find a transmission resonance, though the value of
A where the transmissivity becomes unity varies with fre-
quency. The soliton is always excited when the transmis-
sitivity equals unity; the width and shape of this pattern
are insensitive to the number of unit cells V in this struc-
ture, provided N is sufficiently large, and the value of A
at point P, decreases with V. So far as we can tell, the
critical value of the field required to excite the transmis-
sion resonance roughly equals the field in the appropriate
gap soliton at the surface of the structure; the gap soliton
is then viewed as intrinsic to the superlattice of infinite
extent, and it is only weakly perturbed by the surfaces of
a superlattice of finite length. It acquires the character
of a resonance level with finite lifetime by virtue of radi-
ative decay through the outermost surfaces. An incident
photon may then couple to the resonance mode, and ex-
cite it to produce a transmission resonance where the
transmissivity reaches unity, in a nonlinear analog to the
barrier transmission resonances familiar from elementa-
ry quantum mehcanics.?

We have established, again by numerical studies, that
for frequencies near the lower gap edge, the nonlinear
wave equation applied to the infinitely extended super-
lattice admits soliton solutions for A <0, while for A >0
such solutions exist near the upper gap edge. (In our
calculations, the low-power index of refraction of the
nonlinear film has been chosen larger than that of the
linear film.) An example of such a gap soliton is given
in Fig. 2, for an infinitely extended version of the super-
lattice used to generate the results in Fig. 1. For this
structure, and the frequency used in Fig. 1, we have ex-
plored the properties of the solitons for values of A in the
range 10 "* <A =<0.8. The maximum field E ™ in the
soliton obeys AE (M)2=const., as A is varied with fre-
quency fixed. The envelope of the soliton is fitted accu-
rately by the function f(x) =E *(coshBx) ~! with B in-
dependent of A, suggesting that to good approximation
we indeed have true solitons. At the time of this writing,
we have not succeeded in deriving a simple equation for
the envelope function, from the full nonlinear field equa-
tions used in the numerical work. As the frequency is
moved away from either gap edge, the spatial size of the

soliton shrinks. We have encountered stability problems
integrating the nonlinear equations near the middle of
the gap, and so here we confine our attention to frequen-
cies near the gap edges where the solitons are many lat-
tice constants in spatial width.

If the laser power is increased to higher values, a
second transmission resonance occurs [point P, of Fig.
1(a)]l. When the transmissivity equals unity, the field
pattern inside the structure shows that two solitons have
been excited within it.

We find these results most intriguing. Note that the
transmissivity becomes multivalued at rather low laser
powers. The parameter A =1\ |Eo|? measures the per-
centage change in the dielectric constant of the nonlinear
film when the field in the film has magnitude E¢ equal
to that in the incident beam. For the example shown, we
have bistability when A < —0.0035.

Our model, discussed next, is idealized in one regard.
Dielectric constants for each film in a superlattice unit
cell are presumed real, and so absorption is ignored.
One supposes that in practice, the absorption lengths as-
sociated with materials incorporated into the structures
must be longer than the total length of the superlattice,
to ensure that the behavior found here is realized in ac-
tual samples.

The model superlattice is a stack of normal bilayers;
one film in each bilayer has thickness d; and dielectric
constant 81(0) independent of field, while the thickness of
the second film is d,, and its dielectric constant e,
=eO[1+1|E(z)| 2], with | E(z)| the amplitude of the
field at point z; the z axis is normal to the interface, and
we have confined our attention to plane-polarized radia-

E(2) o:
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FIG. 2. The field amplitude E(z) associated with a soliton
in an infinitely extended superlattice, with parameters chosen
as in Fig. (1). The calculations are for A =—0.001. Again,
distance is measured in vacuum wavelengths.
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tion which propagates in the z direction. Our numerical
calculations suppose that e300 > £{® as remarked above.

We assume that the optical wave in the medium has a
frequency w, equal to that of the incident wave. Thus,
we ignore higher harmonics present by virtue of the non-
linearity, as in numerous earlier studies.®* In the ab-
sence of phase matching, the amplitude of the higher
harmonics will be small. Then in the nonlinear films, the
electric field obeys>*

d’E/dz?+ k3 +A|E|YE =0, (1)
with k2 =w2e$?/c2, and the linearized version of Eq. (1)
with 82(0) replaced by o replaced by 81(0) applies to the

linear films.
We let E(z) =E6(z)explip(z)], to obtain

d26/dz —W¥E3+k3(1+162)E =0, (2a)
and

0 =pGo)+w [ dz'/62(". (2b)

The time-averaged Poynting vector is S =c2E$W/
87w and is conserved (independent of z), and so the pa-
rameter W, in appropriate units, is the transmissivity of
the structure. Our studies of the transmissivity of the fi-
nite superlattice consist of a search for those values of W
for which we may achieve a solution of the nonlinear
equations just described, with boundary conditions at
each interface obeyed, and the appropriate incident wave
illuminating the structure. The soliton solutions intrinsic
to the infinitely extended superlattice have W=0; the en-
velope function vanishes exponentially as one moves far
from the center of the object in either direction, so that
there is no energy flow within this excitation.

The general solution of Eq. (2a) may be expressed in
terms of Jacobi elliptic functions. The task one must ad-
dress is to submit the general solution in each film to the
apropriate boundary conditions. In linear theory, the
general solution for the fields within a film is expressed
in terms of four parameters. One has a wave running
from right to left, superimposed with one from left to
right, each described by a complex amplitude. The gen-
eral solution of the nonlinear equations also involves four
constants. These are W, ¢(zp), the value of 6(z) at a
reference point zp, and a constant A which emerges from
the first integral of Eq. (2a), which reads

A=k3E2+kAE2+W2262+(d6E/dz)2
Even for an isolated, single nonlinear film, the task of
solving for the transmissivity is formidable, as one may

appreciate from a recent paper by Band.>
We have recently addressed the problem of calculating
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the transmissivity of an isolated, nonlinear film® and
devised an efficient means of obtaining solutions. One
selects a trial value of the (real) parameter W, and iden-
tities derived in our paper allow the remaining three pa-
rameters to be uniquely determined once W is chosen.
Identities which link ¢(z¢), 6(z¢), and A4 to W follow
from the boundary conditions at the film surfaces; we
chose zg to be the right-hand (output) edge of the film.
With these parameters in hand, one may use the Jacobi
elliptic functions to determine &(z) and d&/dz at the
left-hand (input) surface. One searches for values of W
that generate values of & and dé/dz on the left which
satisfy the boundary conditions. We thus reduce the
problem to a one-parameter search.

It has proven possible to extend our earlier scheme to
an arbitrary multilayer structure,’ each film of which is
nonlinear in the manner described by Eq. (1). We are
able to retain the feature that one chooses a single pa-
rameter W and a sequence of identities may be used to
express all remaining parameters in the solution of the
multilayer problem in terms of W. We do this by mov-
ing from the right (output) end to the left through the
structure, to find 6(z) and d&/dz at the left-hand side.
We search for values of W that lead to fulfillment of the
boundary conditions on the left. Accuracy can be
checked by our explicitly calculating the reflectivity R
from & and d&/dz obtained in this manner, then testing
whether R+ 7 =1, with T the transmissivity.

As remarked earlier, the soliton in the infinitely ex-
tended superlattice is a solution with W=0. The solitons
such as that in Fig. 2 are generated by a different pro-
cedure. Note that with W =0, the phase ¢(z) is constant
everywhere [Eq. (2b)], and thus may be chosen to be
zero. In the “tail” of the soliton, the field has small am-
plitude, the nonlinear terms are unimportant, and linear
theory relates 6(z) and d6/dz. We choose a small value
for 6(z) at a selected point and use linear theory to
determine d&/dz there, and the solution is matched to
the elliptic-integral description provided by the full
theory. We move from right to left, requiring in the
linear regime that the solution match to the exponential-
ly increasing solution, and use the full elliptic-integral
representation to move out of the linear regime, into and
through that where the nonlinearity asserts itself.

The calculations suggest one should study experimen-
tally, as a function of laser power, the transmissivity of
finite superlattices illuminated with radiation of fre-
quency within a stop gap, near a band edge. Gap-
soliton-mediated bistability should be observed, if the
intrinsic absorption is sufficiently small. From the
theoretical point of view, a derivation of the form of the
nonlinear equation obeyed by the envelope function
would be welcome.
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