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A closed (bosonic) string propagating in a flat space-time where one of the dimensions is curled up
into a circle has a Kramers-Wannier duality symmetry identical to that possessed by the Villain model.
This is also similar to duality in string theory (in the sense of modular invariance). One is also led natu-
rally to extend the space-time coordinate system by introducing dual coordinates. One of the conse-
quences is that the radius of the internal manifold does not have a coordinate-independent meaning and
one cannot physically distinguish between a radius R and a radius a'/R.

PACS numbers: 11.17.+y, 05.70.Fh

The close analogy between the X-Y model in its Vil-
lain form and string theories in certain space-time back-
grounds has been exploited recently in order to derive the
equations of motion of the tachyon' and to derive a
bound on the radius of compactification.? In this Letter
I pursue this analogy further and study some other
consequences for strings propagating in flat space-times
with one of the dimensions curled up into a circle (of ra-
dius R).

First it will be shown that the order and disorder vari-
ables of the X-Y model® are the vertex operators that
create the Kaluza-Klein (KK) and solitonic modes of the
closed string, respectively. The duality that interchanges
the order and disorder variables and also the high- and
low-temperature phases is also the o« t duality (modu-

lar invariance) in string theory that interchanges solitons
and KK modes and R with a'/R. This duality symmetry,
R<a'/R, of the string partition function has been noted
by several authors.* Through use of arguments similar
to those of Kadanoff and Ceva,’ it can be shown? that
for the X-Y model described by the action
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¢® and X" are the order and disorder operators, respec-
tively, where X* is defined by

0.X =£,50X* (1/2R?). (2)

Consider the mode expansion for a string with momen-
tum p in the internal direction and winding number L
x =3 (X, +Xp)]I:

X=xo+pr+Lo+3iY, [(a/n)e ~2nGc+o) 4 (g,/n)e ~Unr=0)], (3a)

X =xo+x§ +(p+L)(z+a)+Y, (i/n)ase —2in(r+o),

Xg=xo—x§ +(p—L)(r—0)+Y,(i/n)G,e ~2m=),

Note that an additional zero mode x¢ which is not
present in the mode expansion for X has been intro-
duced. This is not usually done®” (except in the heterot-
ic construction®) but is in fact crucial for us since we are
going to make x¢ the “position” variable conjugate to
the winding number L, by imposing the commutation
rules [x§,L]1=—ih. Besides being an obvious and nat-
ural thing to do, this is also essential if one requires that
the scattering amplitudes factorize nicely into left- and
right-moving parts, each of which resembles an open-
string scattering amplitude.® The introduction of an ex-
tra coordinate is of some physical significance. The coor-
dinate x§ should not be looked upon as being less funda-
mental in any way than the coordinate xo. There is a
complete isomorphism between the pairs of variables
(x&,L) and (xq,p). As we shall see below, one is led to
extend the requirement of invariance under the usual
coordinate transformations to include invariance under
the discrete transformation xo— x¢. This will turn out

(3b)

(3¢)

to have interesting physical consequences.

The operator e'** is the vertex operator for a tachyon
with momentum k in the internal direction, and
expli + k(X; —Xg)] that for a tachyon with winding
number k. The easiest way to see that these are the
right operators is to study their asymptotic behavior as
t— —oo (where t =it is the Wick-rotated time). Act-
ing on the vacuum these operators reduce to e’ and
exp(ikxg ), respectively. Since [L,x§1=ih, exp(ikxd)
changes the winding number of a state by k. Finally
expl+i(X, —Xr)R?%/a'l is precisely eX", the disorder
variable of the X-Y model. The duality o« 7 results in
an interchange of p with L and thus a KK mode with a
soliton. This is obvious from Eq. (3a). A comment at
this point is appropriate: It is more useful to think of
this transformation as an ‘“‘active” rather than a passive
one in that we are not rewriting the same configuration
in a different (o,7) coordinate system but describing a
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different configuration in the same coordinate system.'°

Thus a KK mode is really transformed into a soliton and
vice versa. Note that after the transformation the vari-
able x¢ no longer has an interpretation as a position
coordinate since it is conjugate not to the momentum but
to the winding number. Thus e™** represents, after the
transformation, a soliton, and exp(ikxg ) represents a
KK mode. This is of course what a duality transforma-
tion in the sense of statistical mechanics should do
—interchange order and disorder variables. Since
p=M/R and L=NR, M,N integers, clearly the new
configuration is allowed only if the radius is now a'/R
rather than R. This is equivalent to changing the tem-
perature T to 1/T. That this transformation is a symme-
try of the free theory is obvious from the form of the
Hamiltonian:

H= [Zn(a):a,,+ti;&,,)+ L—
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which is manifestly invariant under R<«—a'/R and
M <«>N. Similarly the action (1) is invariant under the
interchange

aangaﬂaﬂx*(a,/sz),

and R<>a'/R. We now turn to the interacting theory.

The tree-level n-particle amplitude is of the form®°
“ kiLki kirki
fdu(z,—) I1G; —zj)——L4—L—(z,-* -z )—12—5, (5)
i=1

i<j

where we are interested principally in the momentum
dependence. If the particles have internal momenta then
ki =k;gr, and if they have winding number k;; = — k;z.
In either case the result is the same because of the quad-
ratic dependence on the momenta. Thus we conclude
that at the tree level the n—-KK-mode scattering ampli-
tude (with radius R) is equal to the n-soliton scattering
amplitude (with radius a’/R). Now we turn to the one-
loop case. The zero-mode contribution is in the form of
an integral, ®

(6)
@)
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When there are compactified dimensions one has to replace dp by a discrete sum over momenta and winding numbers.

Thus

pL=M/R—NR, kiir=mi/R, kyr=my/R,..., pr=M/R+NR.

Substituting (8) into (7) and (6), one finds easily that
the result has a symmetry (KK mode)<«<>soliton and
R<+a'/R."" Does the X-Y model have this symmetry?
The answer, not surprisingly, is yes. A version of this
symmetry was proved by José er al. '? where the analogs
of the KK mode and soliton were a symmetry-breaking
perturbation and a vortex, respectively. The partition
function of the X-Y model in a background of these
configurations was shown to have this duality property.
Having established the connection between duality in
string theory and in statistical mechanics we turn to a
discussion of the physical implications of this symmetry
for a universe described by a closed-string theory. One
has, of course, to make a distinction between the usual
symmetries encountered in particle physics and the dual-
ity symmetries. In the former, one does not transform
the parameters of the Lagrangean—only the dynamical
degrees of freedom transform. In string theory, however,
this distinction is blurred because some of the parame-
ters of the Lagrangean become, on second quantization,
dynamical degrees of freedom. In fact this is how gen-
eral coordinate invariance arises from the global Poin-
caré symmetry of the first-quantized action of a string in
a background gravitational field. Under this symmetry
both the coordinates x’ and the metric G transform.
Thus the (radius)? R? is to be thought of as being (G
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where [ is the internal direction. We have already seen
that at the formal level this has the consequence that the
dual coordinate xg is completely isomorphic to xq and,
by the same token, one requires that the theory be in-
variant under the coordinate transformation xo— x§.
However, we have also seen that this induces also the
transformation R— a'/R. This is rather counterintui-
tive since a'/R— o as R— 0.

To explore this let us ask ourselves how we would
determine the radius of an internal dimension. One ob-
vious method that we are used to is to let a particle have
a momentum in the internal dimension so that it has a
wave function e!™/R)* and determine R by measuring its
mass M/R. However, if the experimenter has no
momentum in the internal dimension, x¢, he has no way
of telling what the xo dependence of the wave function of
this particle is. He can only measure its mass. He can-
not therefore decide whether he should use the formula
(mass)>=M?/R? or M2R?/a’, the latter corresponding
to a particle with a winding number M in the internal di-
mension and wave function expli (MR/a')x§]. Thus he
would not be able to decide in this way whether the ra-
dius is R or @'/R. He could next try to determine wheth-
er this particle is a soliton or a KK mode by scattering
other particles, say photons, but then he has to know
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whether this new particle is a soliton or a KK mode
since, as we have seen, scattering amplitudes are com-
pletely symmetric under the interchange soliton<>KK
mode and R<«a'/R. Thus, at some point, he has to
adopt a convention and assign to a given particle either a
momentum or a winding number. This is equivalent to
choosing between a wave function exp(ikxo) and
exp(ikxg ), i.e., choosing a coordinate system. In partic-
ular this means that two different experiments could
adopt different coordinate systems and come up with
different values of the radius (i.e., R or a'/R) and they
would both be right! Thus the radius is a coordinate-
dependent quantity. '3

If the radius were large enough we could walk into the
extra dimension. Could we not then distinguish between
R and a'/R? The answer is no; because if we wanted to
be perverse we could pretend that instead of having
momentum 1/R with R very large, we had a winding
number R with R very small. As with any symmetry
there is no objectively “correct” choice. There is a com-
plete isomorphism between the two sets of variables and
it does not matter which one we choose to use to describe
the phenomenon. As an analogy, if the world were one
big Ising model there would be no sense in trying to de-
cide whether you were in a high-temperature phase or a
low-temperature phase because you would never be able
to distinguish by any measurement (if you were part of
the system) between an order variable and a disorder
variable. It is not unlike any other symmetry except for
the fact that it seems to relate configurations that one is
used to thinking of as being physically distinct.

There are a number of questions that arise. Does this
symmetry have a dynamical content when one goes over
to the second-quantized formalism? If the vacuum is not
invariant under this symmetry, should one expect to have
domain walls separating different regions of the
universe? It would also be interesting to explore the gen-
eralization of this symmetry in the group manifold
compactification schemes.'*!3

I have benefited from many useful discussions with
S. R. Das and E. T. Tomboulis. I would also like to ac-
knowledge conversations with P. Simic. This work is
supported in part by the National Science Foundation
under Grant No. NSF-PHY-84-14188.

Note added — After submitting this paper for publica-
tion, I was informed by V. P. Nair that some of the
consequences of the duality have been discussed by V. P.
Nair, A. Shapere, A. Strominger, and F. Wilczek in a
recent preprint. I would like to thank V. P. Nair for
describing this work to me.
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