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Phase Change during a Cyclic Quantum Evolution
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A new geometric phase factor is defined for any cyclic evolution of a quantum system. This is in-
dependent of the phase factor relating the initial- and final-state vectors and the Hamiltonian, for a
given projection of the evolution on the projective space of rays of the Hilbert space. Some applications,
including the Aharonov-Bohm effect, are considered. For the special case of adiabatic evolution, this
phase factor is a gauge-invariant generalization of the one found by Berry.

PACS numbers: 03.65.—w

A type of evolution of a physical system which is often
of interest in physics is one in which the state of the sys-
tem returns to its original state after an evolution. We
shall call this a cyclic evolution. An example is periodic
motion, such as the precession of a particle with intrinsic
spin and magnetic moment in a constant magnetic field.
Another example is the adiabatic evolution of a quantum
system whose Hamiltonian H returns to its original value
and the state evolves as an eigenstate of the Hamiltonian
and returns to its original state. A third example is the
splitting and recombination of a beam so that the system
may be regarded as going backwards in time along one
beam and returning along the other beam to its original
state at the same time.

Now, in quantum mechanics, the initial- and final-
state vectors of a cyclic evolution are related by a phase
factor e, which can have observable consequences. An
example, which belongs to the second category men-
tioned above, is the rotation of a fermion wave function
by 27 rad by adiabatic rotation of a magnetic field'
through 27 rad so that ¢ = * z. Recently, Berry? has
shown that when H, which is a function of a set of pa-
rameters R’, undergoes adiabatic evolution along a
closed curve I' in the parameter space, then a state that
remains an eigenstate of H(R) corresponding to a simple
eigenvalue E,(R) develops a geometrical phase y, which
depends only on I'. Simon?® has given an interpretation
of this phase as due to holonomy in a line bundle over
the parameter space. Anandan and Stodolsky* have
shown how the Berry phases for the various eigenspaces
can be obtained from the holonomy in a vector bundle.
For the adiabatic motion of spin, this is determined by a
rotation angle a, due to the parallel transport of a Carte-
sian frame with one axis along the spin direction, which
contains the above-mentioned rotation by 2 radians as a
special case. The result of a recent experiment® to ob-
serve Berry’s phase for light can also be understood as a
rotation of the plane of polarization by this angle a.

In this Letter, we consider the phase change for all cy-
clic evolutions which contain the three examples above as
special cases. We show the existence of a phase associat-
ed with cyclic evolution, which is universal in the sense

that it is the same for the infinite number of possible
motions along the curves in the Hilbert space # which
project to a given closed curve C in the projective Hilbert
space P of rays of # and the possible Hamiltonians
H(z) which propagate the state along these curves. This
phase tends to the Berry phase in the adiabatic limit if
H()=HI[R(t)] is chosen accordingly. For an electrical-
ly charged system, we formulate this phase gauge invari-
antly and show that the Aharonov-Bohm (AB) phase®
due to the electromagnetic field may be regarded as a
special case. This generalizes the gauge-noninvariant re-
sult of Berry that the AB phase due to a static magnetic
field is a special case of his phase. This also removes the
mystery of why the AB phase, even in this special case,
should emerge from Berry’s expression even though the
former is independent of this adiabatic approximation.

Suppose that the normalized state | y(z)) € # evolves
according to the Schrodinger equation

H@) | y@)=in(d/dt) | y()), ¢))

such that |y(7))=e"|y(0)), ¢ real. Let IL#H — P be
the projection map defined by II(|y))={|y"):|y"
=c|y), cis a complex number }. Then |y (¢)) defines a
curve C: [0,7]1— # with C=TII(C) being a closed curve
in . Conversely given any such curve C, we can define
a Hamiltonian function H(z) so that (1) is satisfied for
the corresponding normalized |y(z)). Now define
| 5(1)) =e /@ | y(r)) such that f(r) —f(0)=¢. Then
| w(z))=1]%(0)) and from (1),

—daf_1 Y= i %1
i h(v/(t)|H|v/(t)/ (u/(t)|tdt|y/(t)>. (2)

Hence, if we remove the dynamical part from the phase
¢ by defining

p=o+h ' [ W) | H | y(o)ar, 3)
it follows from (2) that
p=J wlita|pdva. @)

Now, clearly, the same | (1)) can be chosen for every
curve C for which II(C) =C, by appropriate choice of
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f(1). Hence B, defined by (3), is independent of ¢ and H
for a given closed curve C. Indeed, for a given C, H(t)
can be chosen so that the second term in (3) is zero,
which may be regarded as an alternative definition of §.
Also, from (4), B is independent of the parameter ¢ of C,
and is uniquely defined up to 2zn (n =integer). Hence

e i is a geometric property of the unparametrized image
of Cin P only.

J

Consider now a slowly varying H(¢), with H() | n(z))
=E, (1) | n(2)), for a complete set {|n(z))}. If we write

[ w()) =§a,,(t)exp [ - #fE,, dr| | n@)),

and use (1) and the time derivative of the eigenvector
equation,’ we have

. Sy {m |H | n)
Qpm amim | i) ngma,, E—E, [ f(E E,,)a’t}, (5)
where the dot denotes time derivative. Suppose that [
him | E | n) so that
m n
ngm (E,—E,)?2 <1 (6) | w(2))=expliuBto,/h) | w(0))

Then if a,(0) =8, the last term in (5) is negligible and
the system would therefore continue as an eigenstate of
H(1), to a good approximation.

In this adiabatic approximation, (5) yields

am (1) =exp [ — f(m | rh)dt]a,,, (0).

For a cyclic adiabatic evolution, the phase i f§{m | ) dt
is independent of the chosen |m(¢)) and Berry? regard-
ed this as a geometrical property of the parameter space
of which H is a function. But this phase is the same as
(4) on our choosing | y(1))=|m(¢)) in the present ap-
proximation. But B, defined by (3), does not depend on
any approximation; so (4) is exactly valid. Moreover,
| w(z)) need not be an eigenstate of H(z), unlike in the
limiting case studied by Berry. Also, the two examples
below will show respectively that it is neither necessary
nor sufficient to go around a (nontrivial) closed curve in
parameter space in order to have a cyclic evolution, with
our associated geometric phase 8. For these reasons, we
regard B as a geometric phase associated with a closed
curve in the projective Hilbert space and not the parame-
ter space, even in the special case considered by Berry.
But given a cyclic evolution, an H(z) which generated
this evolution can be found so that the adiabatic approxi-
mation is valid. Then B can be computed with the use of
the expression given by Berry in terms of the eigenstates
of this Hamiltonian.

We now consider two examples in which the phase 8
emerges naturally and is observable, in principle, even
though the adxabatic approximation is not valid. Sup-
pose that a spin-+ particle with a magnetic moment is in

a homogeneous magnetic field B along the z axis. Then
the Hamiltonian in the rest frame is H, = — uBo,, where
1 0
o:= g —1|
Also,
— cos(0/2)]
w0 [sin(9/2)

1594

_ [ exp(iuBt/h)cos(6/2)
exp(—iuBt/h)sin(6/2) )’

which corresponds to the spin direction being always at
an angle 6 to the z axis. This evolution is periodic with
period t=nmh/uB. Then from (3), for each cycle,
B=n(1—cosB), up to the ambiguity of adding 27zn.
Hence, B is + of the solid angle subtended by a curve
traced on a sphere, by the direction of the spin state, at
the center. This is like the Berry phase except that in
the latter case (1) the solid angle is subtended by a curve
traced by the magnetic field B'(¢) which is large li.e.,
uB'/h > w, the frequency of the orbit of B'(¢)] so that
the adiabatic approximation is valid, and (2) |y(2)) is
assumed to be an eigenstate of this Hamiltonian.
Indeed, we may substitute such a Hamiltonian for the
above H, or add it to H, with w=2uB/h, without
changing B, in this approximation. The spin state will
also move through the same closed curve in the projec-
tive Hilbert space as above if the magnetic field
B=(Bgcoswt, Bgsinwt, Bi3) with cot8=(B;— haw/
2u)/By, where Bo=0.8 And B is the same for all such
Hamiltonians. This illustrates the statement earlier that
B is the same for all curves C in H with the same
C=I1(C). Also, B may be interpreted as arising from
the holonomy transformation, around the closed curve on
the above sphere traced by the direction of the spin state,
due to the curvature on this sphere,4 which is a rotation.
By varying appropriately a magnetic field applied to the
two arms of a neutron interferometer with polarized neu-
trons, it is possible to make the dynamical part of 8 [the
last term in (3)] the same for the two beams.>* Then
the phase difference between the two beams is just the
geometrical phase, which is observable in principle, from
the interference pattern, even when the magnetic field is
varied nonadiabatically. In particular, a phase difference
of & z rad would correspond to a 2z-rad rotation of the
fermion wave function, which is thus observable.

As our second example, suppose that the magnetic
field is B(z) =By+ B, (z), where By is constant and B, (z)
rotates slowly in a plane containing By with |B;(¢) |
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=|Bg]. Suppose that at time ¢ the angle between B,
and By is #— 6(z) and the spin state | y(z)) is in an ap-
proximate eigenstate of H(t) =uB- o, where ¢’ are the
Pauli spin matrices. For 0 < <1, the adiabatic condi-
tion (6) gives 0< —h6/uBpf<1, assuming 6=<0.
Hence 6> 6pexp(—uBot/h) > 0. So 6 can never be-
come zero. That is, if B(T) =0 for some T then the adi-
abatic approximation, as defined above, cannot be
satisfied, regardless of how slowly B;(¢) rotates. Howev-
er, because of conservation of angular momentum,
| w(z)) remains an eigenstate of H(r) even at t =7. But
if 8 changes monotonically then a level crossing occurs at
the point of degeneracy (B =0) so that the energy eigen-
value corresponding to | w(z)) changes sign at t =T. For
each rotation of By by 2z rad, | y) rotates by z rad, so
that the system returns to its original state after two ro-
tations of B(z). For this cyclic evolution, our f=x
which can be seen from the fact that a spin- 5 particle
acquires a phase x during a rotation, or that the curve C
on the projective Hilbert space, which is a sphere, is a
great circle, subtending a solid angle 2z at the center.

=14 -9 ; ~(;)y — L
dt(t) <y/(t)|dt hAo(t)lw(t)> h(w(t)lHk(t)Iy/(t)>.

We consider now a cyclic evolution so that

| w(z)) =e“’exp[— thj; Aodt | | y(0)).

Choose f(¢) so that ¢ =f(z) — f(0). Then

| w(0)).

| (7)) =exp [ —-i—Z—J; Aodt

So we now define the gauge-invariant generalization of
(3) as

ﬁs¢+%j;r<w(t)lHk(t)|y/(t))dt, (8)
which on use of (7) gives
=(an1:4 _ 4 ; .
B fo G i~ L 3o(0) [t ©)

Here, | #(1)) is obtained by parallel transport of | #(0)),
with respect to the electromagnetic connection, along the
congruence of lines parallel to the time axis. We could
have chosen, instead, any other congruence of paths from
t =0 to t =t in our definition of ¢ and therefore | y(z)).
This would correspondingly change B, which therefore
depends on the chosen congruence. But, again, B is in-
dependent of ¢ and H(¢) for all the motions in % that
project to the same closed curve C in P, for a given

This example is similar to Berry’s phase in that | y(z)) is
always an eigenstate of H(r), even though Berry’s
prescription cannot be applied here because of the cross-
ing of the point of degeneracy at which the adiabatic ap-
proximation breaks down.

Consider now a system_ with electric charge ¢ for
which H=H,(p—(q/)AW),R)+qAo(t) in (1).
Here, (x| 4,(t) | y(t")) =A,(x,0)y(x,t’), where A,(x,1)
is the usual electromagnetic four-potential, and R; are
some parameters. Under a gauge transformation,

| w(1))— explilg/)A@] | y()),

Ao(t) — Ag(t) —c T'9A(r)/a1,
and

Hi () — expli(g/)AWIH, (Dexpl —i(q/c)A@)].
As before, define | y(¢))=e Y| y(z)). If we require

that |y undergo the same gauge transformation as
| w(¢)), f(2) is gauge invariant. Then, from (1),

@)

chosen congruence. Both 8 and ¢, which satisfies

e—iv=<y/(r)|exp{—icq~_£)f,aodt | y(O)),

are gauge invariant. In the adiabatic limit, |y(z)) can
be chosen to be an eigenstate of Hy(z) and (9) is then a
gauge-invariant generalization of the Berry phase.

We illustrate this by means of the AB effect.® Berry
has obtained the AB phase from the gauge-noninvariant
expression (4) with |y(z)) an eigenstate of H(z), for a
stationary magnetic field, in a special gauge.® But a
gauge can be chosen so that the AB phase is included in
the dynamical phase instead of the geometrical phase
(4). Also, in general, there is no cyclic evolution in an
AB experiment. But our g defined by Eq. (8) or (9) is
gauge invariant and includes the AB phase in the special
case to be described now.

Suppose that a charged-particle beam is split into two
beams at t =0 which, after traveling in field-free regions,
are recombined so that they have the same state at t =1.
It is assumed here that the splitting and the subsequent
evolution of the two beams occur under the action of two
separate Hamiltonians. This is possible if we restrict
ourselves to the Hilbert space of a subset of the degrees
of freedom of a given system, as in the example con-
sidered by Aharonov and Vardi.'® This belongs to the
third example of a cyclic evolution mentioned at the be-
ginning of this Letter. The wave function of each beam
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at ¢t =7, assuming that it has a fairly well defined momentum, is

- _i(F
vi(x,1) -—exp[ s j; E;dt

where y; is a space-time curve through the beam and p
represents the approximate kinetic momentum of the
beam. Hence on using (8), we have

p= —%SﬁyA,,dxw%ﬁp-dx, (10)

where ¥ is the closed curve formed from y, and y,. But
this is only an approximate treatment and a more careful
investigation of this problem is needed.

In conclusion, we note that #* =% — {0} is a princi-
pal fiber bundle over ? with structure group C* (the
group of nonzero complex numbers), and the disjoint
union of the rays in # is the natural line bundle over 7
whose fiber above any p € P is p itself. Then, clearly, 8,
given by (4), arises from the holonomy due to a connec-
tion in either bundle such that |y(z)) is parallel trans-
ported if

(w(0) | (d/dt) | w(t)) =0, (11)

i.e., the horizontal spaces are perpendicular to the fibers
with respect to the Hilbert space inner product. Condi-
tion (11) was used by Simon? to define a connection on a
line bundle over parameter space, which is different from
the above bundles. The real part of (11) says that
(w(2) | w(2)) is constant during parallel transport. Since
this is true also during any time evolution determined by
(1), we may restrict consideration to the subbundle
F={ly) e #:(yly)=1} of #*. This F is the Hopf
bundle!! over P. Then the imaginary part of (11)
defines the horizontal spaces in F which determine a
connection. This is the usual connection in & and e is
the holonomy transformation associated with it. If #
has finite dimension /V then 7 has dimension N —1. For
N =2, P is the complex projective space P;(C) which is
a sphere with the Fubini-study metric!! on ? being the
usual metric on the sphere. Opposite points on this
sphere represent rays containing orthogonal states. Our
geometric phase can then be obtained from the holono-
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I i
exp [ - —;lan#dx“]exp [;‘fr‘p dx

v(x,0), i=lor2,

my angle a associated with parallel transport around a
closed curve on this sphere like in Ref. 4.

It is a pleasure to thank Don Page for suggesting the
relevance of the Hopf bundle and the Fubini-Study
metric to this work.
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