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Statistical Mechanics of Cosmic Strings
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An analytic approach to the phase space for a network of cosmic strings is presented, based on earlier
work of Frautschi and Carlitz. It correctly predicts the main features of the network at formation, and is
in good agreement with the picture emerging from string simulations. Our results also have important
implications for superstrings or heterotic strings in the early Universe.
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The idea that topologically stable strings formed at a
phase transition in the very early Universe later seeded
the formation of galaxies and clusters of galaxies has at-
tracted much interest recently. ' Numerical simulations
of the formation and evolution of a network of strings
have already enabled a series of direct comparisons with
observational data to be made. In particular the two-
point correlation function for loops chopped off' a string
network appears to match the observed correlation func-
tion for poor clusters, rich clusters, and superclusters re-
markably closely without any free parameters. If the
mass per unit length p is given by Gp =10,where G is
Newton's constant, then loops with the number density
of Abell clusters have the correct mass to form Abell
clusters and similarly for loops with the number density
of galaxies.

It is important to develop an analytical approach to
cosmic string formation and evolution. So far Frieman
and Scherrer have discussed a random-walk model for
string formation, and Kibble and Bennett an analytic
formalism for the evolution of String networks.

In this Letter we propose a new and very diA'erent ap-
proach. It predicts the main features of string formation
correctly and indicates that a string-dominated universe
of the kind which Kibble has discussed is very unlikely,
in agreement with the numerical simulations.

Consider a box containing string in Minkowski space-
time. In the microcanonical ensemble, we try to find
which string configurations dominate the density of
states. With the assumption of ergodicity, we expect the
network to end up in these configurations.

Classically, a small loop has as many possible
configurations as a large loop. Thus it seems obvious
that one maximizes the number of states available by
putting all the energy into the smallest possible loops.
However, this is incorrect. In counting states one has to
put a measure on phase space —effectively by quantizing
the system. What this does is to set a small-scale cutoff'
to the size of wiggles on the string, given roughly by
p

' . Thus small loops have fewer possible states than
large loops.

We shall find difrerent behavior in two regimes. Low
density corresponds to p « p, while high density corre-

sponds to p= p . Both regimes are of interest —cosmic
strings are in the high-density regime at formation but as
the Universe expands are quickly led into the low-density
regime.

We ignore the energy in string-string interactions. In
the low-density case the length involved in string interac-
tions is a small fraction of the total so that this is a good
approximation. The only role of the interactions is in al-
lowing the system to explore phase space.

String statistical mechanics was considered in the con-
text of hadronic physics by Frautschi and Carlitz. '

Recently, Bowick and Wijewardhana" have discussed
superstrings and heterotic strings at high densities.

We want to quantize closed and, for simplicity, orient-
able bosonic strings in d=4 space-time dimensions. In
the covariant quantization, the Virasoro constraints do
eliminate all negative-norm states for d ~ 26 but for
d & 26 they also create some positive-norm states which
do not have classical analogs. We clearly should not
count these states. In the light-cone quantization, the
Lorentz algebra does not close for d & 26, and so the S-
matrix elements are not Lorentz invariant. However,
since we merely want to count states, this should not be a
problem. ' We therefore only consider states created by
the D =d —2 transverse-mode oscillators.

As is well known, for free closed bosonic strings the
position of the string is given by the operator '

x'(ct) =tI'+
j 2ina -j —2inaane ane

where the level-counting operator is N=g„&oa' „a„'
and similarly for N. We also have the constraint N =N
on physical states.

We impose a cutofI in mass mo which we take to be

where j runs from 1 to D, q~ is the center-of-mass coor-
dinate, and a~, a~ are the mode oscillators obeying
[a„',at 1 =n6't6 +„o and similarly for at. tT runs from 0
to ~. The mass operator is given by

m =4trp(N+N),
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larger than a few times (8~p)' . For low-lying states
neither the Nambu approximation nor the Hardy-
Ramanujan formula for the level degeneracy are good
approximations but more importantly we do not expect
the quantum-classical correspondence to be good.

At level n (the eigenvalue of N) the number of physi-
cal states P(n) is given by the Hardy-Ramanujan formu-
la. For closed oriented strings one simply squares P(n)
for open strings' ' to find, in D transverse dimensions
and at large n,

level n. Consider the operator measuring the mean
squared radius of the string. By symmetry we can ex-
press this just in terms of one component x '(o.):

r
(D+1) ""

dc: [x ' (cr) l ':.&o

We normal order the expression and subtract the part in-

volving the center-of-mass coordinate q". We now cal-
culate, using standard Cauchy-integral techniques' for
n»1, the average of r at level n:

P(n) = —,
' (D/24) ' " 'n ' " 'exp[2'(2Dn/3) ' ]

(3)

(Vlir 211+)

P(n)
= (D+1) p6D

(s)

Using (2) we find the density of states

p(m)dm =cm + exp(bm)dm,

where c is a constant with dimensions p '+, i.e., in-

verse volume, and b =(Dn/3p) ' /2.
First we ask what typical configurations look like at

where the sum is over all states at level n.

Interestingly, we find r ~n' ~m. Since the mass of
a string is proportional to its invariant length l we find

r ~/. Thus typical string configurations are Brownian
walks!

Now consider a box of strings. Following Frautschi
and Carlitz, ' we write the total number of microstates

tt(E) = g n, (E), A„(E)=, Q„dm I „l d +';6(QE; E)—
n=l n! l

(6)

for a box of volume V containing n strings with a total energy between E and E+dE with zero net momentum. One
can show that the momentum integrals are dominated by the nonrelativistic region where they are Gaussian' and thus

nVn
n (F((D+ 1)( 1)/2) n 1(g g+ dm;m; m +' B(E —m)(E —m) "exp(bm),

l6 mo

) =(D+1)(n —1)/2 —1, m =pm;

The exponential dependence on m maximizes the integrand for m =E. However, the power-law dependence
m; + maximizes the integrand for m; close to mo.

If E »nmo, at least one of the m; must be much greater than mo. Using a saddle-point approximation, one finds that
the integral is dominated by regions where one string has a large mass =E and the rest have small masses = mo, and
neglecting numerical constants, one obtains '

c"V" 'n[(D+1)n/2] '/ exp(bE)
(( b ) n(D+()/2E (D+1)/2[E (n 1 )m ] (D+3)/2 '

whence we see that for E »nmo and n »1,

Q„(cVa/n) ~(mob) +( "/

which is greatest for
cVmo

E (m b ) (D+ ()/2 (12)A=Ann max

most right up to the maximal value n, „=E/mo, and so
' E/mo

n, , = c V/(m()b) ' "'" (1O)

p =E/ V» cm, (m, b)

So the result is only valid for high densities. '
For low densities we expect A„ to be largest for

n = E/mo Nevertheless we fin.d that (8) is still valid al-

—there is a fixed number density of loops independent of
the total energy.

However, consistency demands that n «E/mo, i.e. ,

ft „(E,M ) = n A ) ( M)A„) (E —M ), (13)

Now we turn to calculating the distribution of loop
masses. The probability of finding a loop of mass be-
tween M and M+dM in any given microstate is just the
fraction of all accessible microstates which contain a
loop with mass between M and M+dM, obtained by the
insertion of 8 functions g,". =(8(m; —M) into (6). Not
surprisingly we find that the number of states with n

loops of total energy E to E+dE and one with a mass
between M and M+dM is approximately given by
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We have to sum over n to obtain the number of loops
with masses M to M+ dM,

(14)

r+ dr is

n(r)dr ~ r
df'

r
(16)

For high densities we find (for M «E)
n( M) ~n, „M + t exp(bM)exp[b(E —M)]

M
—(D+ 3)/2 (15)

In our discussion above we saw that M ~r, the mean
square radius, and so the number of loops of radius r to

This is an important result —the distribution of loop
sizes is scale invariant [on dimensional grounds n(r)dr
has dimensions r +' since there are D+1 spatial di-
mensions and (16) indicates that no other dimensional
scale enters into the expression]. We also find that
the energy of the one large loop is = E —m Oc

&&V(m b) +' =E
For low densities we find instead (for M «E again)

1) = (E/mo)exp(bM)M + exp[b(E —M)]E +' W

W = [cV(m o/E ) (m ob ) + ' t ] ' =exp [a (E —M )/m o],

with a = ln(mo/p), and

(17)

n(M)dM~dMM ( + )t exp( —aM/mo).

So large loops are exponentially suppressed.
To summarize, at high densities we find that the densi-

ty of states is dominated by configurations with one large
loop containing most of the energy and with a scale-
invariant distribution of Brownian loops. Remarkably,
these results (for D=2) are exactly those obtained in

simulations of string formation.
At first sight it is surprising that our treatment of free

strings should apply to strings at formation. At this time
the typical distance between strings is roughly the same
as their width, so that they are certainly at high density.
But the length of string involved in intersections is also a
large fraction of the total length, and so neglect of the
interactions is a bad approximation. However, the nu-
merical simulations of string formation in any case do
not take any account of string-interaction energy but
merely assign phases at random to domains. They are
also a microcanonical ensemble —for fixed string density
(probability per link of forming a string) they produce
typical (randomly chosen) configurations. Thus it is

perhaps not too surprising (though nonetheless an impor-
tant success) that we get the same result. Our result also
applies for arbitrary D & 0—as far as we know it has
only ever been checked in D =2.

Second, at low densities we find that phase space
favors configurations where all the string is chopped up
into the smallest possible loops. This result is relevant to
the evolution of string networks. It suggests that a box
of strings in flat space-time at low densities will rapidly
grind itself up into the smallest possible loops. Thus it
argues strongly against the existence of an equilibrium
configuration of long strings and loops where reconnec-
tion of loops balances loops being chopped ofT—an as-
sumption Kibble has used to argue that the Universe
could become string dominated. ' Our results cast doubt
on this scenario, and are fully consistent with the numer-

ical simulations —phase space heavily favors chopping
oA of loops on scales inside the horizon where strings
move as in flat space-time.

Finally, our interpretation of these results is rather
diflerent from those occurring in the literature on super-
strings and heterotic strings. ' Frautschi's result that
configurations with most of the energy in a single string
are favored has been interpreted as implying that the
whole Universe could have come from a single string.
However, we see that at high density the favored
configuration for closed bosonic strings is one large
string and a scale-invariant distribution of loops.
Heterotic strings and closed superstrings also have a den-
sity of states given by (4), with D=8. " Thus (if we
neglect interactions) all our calculations go through for
these too.

In summary, we feel that the results obtained here
represent a useful beginning to an analytical approach to
the formation and evolution of cosmic strings.
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