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Dendritic Crystallization: Numerical Study of the One-Sided Model
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Dendritic growth of crystals in two dimensions is analyzed by a Green's-function method. A one-sided
diAusional model is treated in quasistationary approximation. Anisotropy is found necessary for dendri-
tic growth. We find scaling with anisotropy to be in agreement with recent results for needle crystals in
the symmetric model. For fixed anisotropy the growth rate is proportional to the square of the Peclet
number. The side-branch pattern is in qualitative agreement with experiments in three dimensions for
diferent anisotropies.

PACS numbers: 61.50.Cj, 05.70.Fh, 68.70.+w, 81.30.Fb

The selection mechanism for dendritic patterns' in

crystal growth has been a puzzle for many years. If we
ignore surface tension and crystalline anisotropy, a con-
tinuous set of parabolic shapes for the interface between
a crystal growing into a supercooled melt are solutions
("Ivantsov parabolas" ) to the Stefan problem of a mov-

ing interface in a diAusion field.
The introduction of surface tension and crystalline an-

isotropy was recently found to select a needle-shaped,
almost parabolic form from this continuous set of
Ivantsov parabolas, while in previous approximate treat-
ments' of the surface tension the continuous set seemed
to survive. In fact, surface tension causes an essential
singularity, turning the mathematical problem into a
nonlinear eigenvalue problem. The result is a discrete
set of needle solutions. A recent stability analysis of
the needle solutions indicates that the fastest-moving
solution is stable in the moving frame of reference and
thus is the natural candidate for the true dendrite. Ex-
periments, '' on the other hand, essentially always show
dendrites, i.e., needles with side branches.

The presently available results on the existence of a
needle-crystal solution are usually based on the sym-
metric model, ' where difT'usion of heat takes place
symmetrically both in the solid and in the melt. Experi-
ments in two dimensions are usually based on the one-
sided diff'usion of material within the liquid rather than
on dift'usion of heat. A recent analysis of the one-sided
model shows the relation between the needle solution for
the crystallization and the Saftmann-Taylor problem,
but is not yet as detailed as the results on the symmetri-
cal model. The results on the boundary-layer model
(BLM) are not conclusive in the experimentally interest-
ing range of small deviation from equilibrium. Despite
some remarkable progress, up to now it is still a com-
pletely open problem how to describe the mode of opera-
tion of a side-branch-producing dendrite, the standard
situation in experiments. The best results for free den-
dritic growth were obtained in three dimensions"; in two
dimensions there are problems with the nonplanarity of
the interface normal to the side walls. A further prob-

lem is the quantitative control of anisotropy both in two
and three dimensions.

We have performed a numerical simulation of the full
diAusional problem in two dimensions on the one-sided
model. This is relevant for comparison with experiments
on chemical diA usion. The well-known model ' is
defined as follows:

t)u (x,z, t)/Bt =0 =V'u+ (v/D) Bu/Bz,

u =6 dp[1+ s cos(m0)]K, (2)
—Da Vu, = vn, . (3)

(1) is the diffusion equation in quasistationary approxi-
mation in a frame of reference moving at velocity v in

the z direction. (2) is the boundary condition for the
dift'usion field u at the interface; at infinity one has u =0.
(3) is the conservation law for the solute or impurity at
the interface. u(x, z, t) is the normalized diffusion field,
A=O-1 is the normalized supercooling, D the diAusion
coeScient, do the capillary length, e the strength of the
m-fold crystalline anisotropy, and K the curvature of the
interface. For do =0 one obtains Ivantsov parabolas
with tip radius Rp=pl, where l=2D/v is the diffusion
length, and the Peclet number p is obtained from
5 =dtrp exp(p)erfc(Wp). In principle the anisotropy
also enters in (3), but in the limit of small 6 (or for a
segregation coe%cient = 1) we may ignore it for better
comparison with existing results on the two-sided ther-
mal model. (1) then is defined on the liquid side of the
interface only.

The use of the quasistationary approximation here is

physically meaningful' for parameter values where the
diAusion length is large compared to other typical length
scales like radius of the tip of the dendrite or distance
between side branches. At least for the smaller super-
coolings used here this is definitely the case.

We have converted (1)-(3) into a form' such that
the two-dimensional differential equation (1) becomes a
one-dimensional integral equation (Green's function).
The basic numerical procedure then is the following. We
start with a parabola pointing in the z direction symmet-
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rical about the z axis, discretize it into an N-gon, and
define u, (x,z, t =0) along this curve from (2). The ve-

locity v is first calculated from the corresponding
Ivantsov parabola. We now know the Green's function
and derivative and are left with an N & N matrix
(N ( 1000) as a linear problem for the normal velocities
at each point along the interface. Solving this we define
a time step 6t and displace the interface in the normal
direction. We now have the new velocity from the tip of
the deformed parabola and can repeat the process, simu-

lating growth of the crystallization front.
To handle the asymptotic tail of the dendrite we have

divided the interface into three parts along z, a tip re-

gion, a transition region, and the tail. The tail is an
Ivantsov parabola of length ) 51 defined by the growth
rate v. It is displaced along with the tip. Careful han-

dling of this tail is important for the global conservation
of the field variable (chemical concentration or energy),
as was also noticed in Ref. 7. The missing side-branch
structure there does not seem to be important as we con-
clude from extrapolations to infinite system size, but it

may affect the noise in the system. The tip region is ful-

ly treated as described above. In the transition region at
each time step the diffusion flux is calculated as above,
but the displacement of each point is continuously
modified down the curve such that it always connects to

the tail. One type of test performed was to start with an
Ivantsov parabola for do=0, calculate for a single time
step the normal velocities, and compare them with the
known exact values. The relative precision was better
than 5 x 10 at each point. Time step and grid spacing
are dynamically adjusted, the typical grid spacing being(0.05Ro, smaller than used for the needle-crystal calcu-
lation. The grid adjustment was already tested on pre-
vious calculations on the geometrical model. Two
different, independently written versions ' of the pro-
gram gave the same results for h, =0,5. Further details
of the numerical procedure will be published elsewhere.

The result of such a calculation is shown in Fig. 1 as
stroboscopic pictures at equal time intervals with
do=0.001. The other parameters, 5=0.25, ~4=0. 1, are
comparable to typical experimental values, since from 6,

a Peclet number (0.03 follows, while c4 corresponds to
the anisotropy of the capillary length of succinonitrile.
The left-hand side in the growth direction shows the tip
region only, the right-hand side includes the transition
region, and the parabolic tail is not shown. The dendrite
converges to a stationary side branch producing a state
independent of initial conditions. The dependence of the
results on the length of the tip region considered was
very weak, as long as = 3 side branches were contained.
We have varied the length of the tip region, the grid
spacing, and the initial condition for each of the parame-
ter sets A=(0.5,0.25), e4=(0.05,0.1,0. 15) for an extra-
polation to infinite length and zero mesh.

The results for the scaled growth rates versus anisotro-

py are shown in Fig. 2, compared with the needle re-
sults for the symmetrical model at 6 O. Dendritic
growth requires nonzero anisotropy. The raw data al-
ready scale with e4 as predicted apart from a constant
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FIG. 1. Stroboscopic plot of the simulation of an almost
parabolic dendrite. Parameters are 6 =0.25, e4 =0.1. Graphs
were produced at equal time intervals.

FIG. 2. Normalized growth rate vs anisotropy for 6=0.25,
0.5. The broken line is our extrapolation to zero grid spacing
and infinite size; the full curve corresponds to the needle (Ref.
7) in the symmetrical model. The scaling appears to be univer-
sal.
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Noise in our calculation comes from two sources, the
discretization and the irregularities due to competing
side branches. A refined version of the program starting
from a precise needle crystal might elucidate this in the
near future. Considering experimental uncertainties in

materials constants, hydrodynamic Aow, and boundary
conditions, we finally think that our calculations are at
least competitive.

We thank Martine Ben-Amar for providing her data
in Fig. 3.
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FIG. 3. Ratio of actual tip radius R to Ivantsov radius Ro
corresponding to the same growth rate, plotted vs anisotropy.
Again the scaling appears to be universal.

factor of = 2; the extrapolated data (broken line) are
only by a constant factor of = 1.3 higher than the pre-
diction. We estimate a maximal error of 20% for the ex-
trapolation.

If we were to replace p 6 in the definition of a (as
suggested in the limit p 0), the scaled numerical data
obtained at two h, values would diA'er by a factor 3! This
shows that the results scale as v-p at least up to
6=0.5, in agreement with a recent prediction for the
needle. '

In Fig. 3 we show the ratio of the actual tip radius R
and the corresponding Ivantsov radius Ro versus anisot-
ropy in comparison with data for the symmetrical nee-
dle. Again we find striking agreement.

To summarize, we have found excellent agreement
with the predictions from the symmetrical needle solu-
tion considering scaling of the growth rate and tip ra-
dius with the strength of the anisotropy and scaling
v —p with the Peclet number. Furthermore we confirm
scaling of the spacing between side branches = 3RD at
~4=0. 1 in agreement with experiments in three dimen-
sions. " The amplitude of the side branches' decreases
with increasing anisotropy, as also observed in experi-
ments on diA'erent material. '' These results are insofar
remarkable, as the pattern Fig. 1 with the side branches
is very diAerent from the needle solutions. This quanti-
tative agreement indicates that the selection process here
is largely governed by the immediate neighborhood of
the tip. At the moment we cannot answer the ques-
tion ' whether the side branches are triggered by noise.
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