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Diffraction-Free Beams
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It was recently predicted that nondiAracting beams, with beam spots as small as a few wavelengths,
can exist and propagate in free space. We report the first experimental investigation of these beams.

PACS numbers: 03.50.—z, 03.65.—w, 41.10.Hv, 42. 10.Hc

Diffraction is one of the universal phenomena of phys-
ics, and one of the best understood. It affects all classi-
cal wave fields without exception. Furthermore, given
the de Broglie postulate associating particle momentum
inversely with wavelength, diffraction is the fundamental
basis for quantum-mechanical uncertainty relations, as
Heisenberg explained very clearly.

It is the Helmholtz equation that governs diffractive
phenomena in every area of physics:

[V'+ tc']e(r;tc) =0.

However, Durnin ' has recently pointed out that the
Helmholtz equation has a class of dt'ffraction free mode-
solutions. One recalls that techniques for reducing
diffractive spreading and enhancing beam directivity
have long been pursued, for example, in the design of
super-gain antennas. Toraldo di Francia gives a concise
discussion of the intrinsic limitations of these techniques,
and makes clear that in any event they aim for a reduc-
tion, not an elimination, of diffractive spreading.

Of course, plane waves are diAraction-free mode solu-
tions of the Helmholtz equation, but Durnin's diffrac-
tion-free modes can have the startling property that they
describe well defined beams with narrow beam radii.
The central spot radius can be extremely narro~, on the
order of one wavelength, without being subject to dif

fracti ve spreading
The simplest of Durnin's predicted nonspreading beam

solutions, which is easily shown to satisfy (1), is a mono-
chromatic wave propagating in the z direction with field
amplitude

e( ,xyz; )tc=exp[t'Pz] Jo(ap), (2)

where a +P =tc, x +y =p, and Jo is the zeroth-
order Bessel function of the first kind. When 0 & a & v,
solution (2) represents a nondigracting beam because it
has the same intensity distribution Jo(ap) in every plane
normal to the z axis. The half-width of the central peak
is approximately a, and the transverse skirt of the dis-
tribution decays as p

It must be emphasized that these are exact, nonsingu-
lar solutions appropriate to free space (no boundaries or
guiding surfaces or nonlinear media) and they are not
the packet-type solutions recently discussed by Britting-
ham, Belanger, " and Ziolkowski. 5

The detailed properties of the beam associated with
solution (2) have been described elsewhere' and we sum-
marize the most important of these properties in Fig. l.
The figure shows the transverse intensity profile of the Jo
beam and of a Gaussian beam with the same spot size at
z =0. Normal diffractive beam spreading, accompanied
by rapid decay of peak intensity, is exhibited by the
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FIG. 1. The transverse profiles of a Jo beam and of a Gauss-
ian beam with the same spot size (FWHM = 70 pm) in the
"=0 plane are shor n at a succession of z values. The Jo beam
is invariant to propagation along the z axis, but the Gaussian
beam exhibits normal diAractive spreading and a rapid de-

crease of peak intensity. The dotted curves indicate the Gauss-
ian beam at the distances: Curve a z=0, curve b z =10 cm,
and curve c z =100 cm, if we assume K=6328 A. The Gauss-
ian intensities at z =10 and 100 cm have been multiplied by
factors of 30 and 2000, respectively, to permit visibility.

Gaussian beam, while the Jp hearn has the same intensi-

ty profile at every value of z. Of course, Durnin's solu-
tions are rigorously exact only in infinite free space,
whereas any realizations of such beams in a laboratory
will necessarily be limited by a finite aperture,

In this note we report the first experimental investiga-
tion of Durnin's nondiAracting beams. A beam having
the same parameters of Fig. 1 was created by means of
the setup shown in Fig. 2. A circular slit of mean diame-
ter d=2. 5 mm and width hd =10 pm was placed in the
focal plane of a lens of focal length f=305 mm and ra-
dius R =3.5 mrn. Ideally, each point along the slit acts
as a point source which the lens transforms into a plane
wave. It is not hard to see that the set of plane ~aves
formed in this way has wave vectors lying on the surface
of a cone, and Durnin has shown that this can be regard-
ed as the defining characteristic of the Jp beam. %hen
the slit is illuminated with collimated light of wavelength

one then obtains a Jp beam with spot parameter
a =(2z/X)sinH, where 0=tan '(d/2f). In practice, of
course, the amplitude is modulated by the difI'raction en-
velope of the slit. That modulation is negligible within
the finite output aperture R, provided that Ad ((iaaf/R, as
it is in this particular case.

In our experiment the radius of the lens sho~n in Fig.
2 defines the finite aperture. According to geometrical
optics, a shadow zone begins along the z axis at a dis-
tance Z,„=R/tanO from the aperture. Since the beam
radius is approximately r = a ', we can use tanO
= sinO=a/K =ak/Zx to express the maximum propaga-
tion distance as Z,„=2ycRr/X.

This geometrical estimate of the maximum range

FIG. 2. Experimental arrangement for the creation of a Jo
beam. Collimated light of wavelength k illuminates a circular
slit located in the focal plane of a lens. The mean diameter of
the slit is d, the width of the slit is h, d, the focal length of the
lens is f, and the radius of the output aperture is R. The dis-
tance Z,„ indicates the beginning of the geometrical shadow
zone along the .axis.

should be compared to the distance that an ordinarily
collimated or apodized beam can propagate without
significant spreading. The usual distance over which a
beam of radius r remains transversely well localized
while propagating in free space is the Rayleigh range
Z„=vcr /X Thus the .propagation range predicted from
Fig. 2 will be much larger than the conventional range of
a beam of radius a ' whenever R&) e

In Fig. 3(a) we show a numerical simulation of the
propagation of the peak intensity of both the Gaussian
and the Jp beam shown in Fig. 1, taking into account the
finite initial aperture diameter 2R =7 mm. The peak in-
tensity of the Gaussian beam decreases by an order of
magnitude after propagating only 5 crn. The peak inten-
sity of the Jp beam, on the other hand, oscillates about
its initial value with increasing amplitude and decreasing
frequency until reaching a point where a sharp decline
occurs. (Since these intensity oscillations are reminis-
cent of the Fresnel diA'raction pattern near a knife edge,
it is important to note that this graph represents the
propagation of peak intensity away from the aperture
rather than difrraction in the transverse plane near the
aperture. ) Using the numerical values given above, one
finds that the geometrical estimate Z,„ for the rnax-
imum range of the Jp beam is 85 cm, a point located
exactly at the base of the sharp decline in peak intensity
shown in Fig. 3.

In Fig. 3(b) we show the curve of Fig. 3(a) with ex-
perimental data points superimposed. A Jp beam having
the parameters given above was measured every centime-
ter from z =10 cm (the outer surface of our lens) to
z =1 m. The data are well fitted by the numerical simu-
lation of the propagation of peak intensity. We have also
observed the transverse profile of the beam as a function
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currently in preparation.
In conclusion, we have observed the most important

properties of the ideal Jo beam. We have confirmed that
beams exist whose central maxima are remarkably resis-
tant to the diffractive spreading commonly associated
with all wave propagation. This finding is not in con ict
with Heisenberg's uncertainty relation Apex ) h/2 «
the laws of difTraction. The reason is that, for a Jo
beam, h.x is actually infinite because of the p

' trans-
verse dependence of Jo (ap) for large p. Despite its
infinite rms radius, however, it is clear that the Jo beam
has a well defined sharply peaked radial profile. Finally,
we have also shown that a laboratory realization of these
beams is feasible using only simple optical elements.

We are grateful for the generous loan of laboratory
space and equipment by several members of The Insti-
tute of Optics, Nicholas George, M. P. Givens, and D. T.
Moore, and the enthusiastic cooperation of G. M.
Morris, as well as the encouragement and support o
K. J. Teegarden. This work was partially supported y
grants from the Research Corporation and the National
Science Foundation.
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of distance z from the aperture and found that the pre-
dictions implied by Fig. 1 are also obeyed. No measur-
able spreading of the central peak profile could be ob-
served over a propagation distance of almost 1 m. A
compre ensive reh eport on our experimental resu ts is

FIG. 3. (a) Numerical simulation of the on-axis intensity of
the Jo and Gaussian beams shown in Fig. , gi . 1 taking into ac-

count the finite aperture o ef the lens used to create the Jo beam.

The dashed curve shows the rapid decreasese in on-axis intensity
of the Gaussianted with normal diAractive spreading o eassociate wi

erimental data addedbeam. (b) Same curve as in (a) with experimen a
d f (50 cm to allow visibility of data(and curve remove or z

points).
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In fact, from numerical simulations it has eenen found that
the geometrically estimated range o p p gf ro a ation coincides
with the effective nonspreading range o beams of finite

aperture for a va ues o a ell I f b tween a=2~/k (when the wave is

d Z =0) to a=2m/R (when the source field isevanescent an

essentially just a uniform disk of radius R).


