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Magnetoresistance of Hydrogen-Doped Zr2Ni Metallic Glass
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We report the results of magnetoresistance measurements on amorphous hydrogen-doped Zr2Ni sam-
ples and compare them with the current theoretical concepts based on weak localization in three-
dimensional systems in the presence of strong spin-orbit interaction. We find that the hydrogen dopant
strongly suppresses the spin-orbit and the Maki-Thompson contributions to magnetoresistance.

PACS numbers: 72. 15.Gd, 71.55.JV

In the last few years numerous experiments have
demonstrated anomalous magnetoresistance in quasi
two-dimensional films'; a few measurements are also
available on three-dimensional systems, particularly
amorphous ones. The results are reasonably well un-

derstood in terms of weak localization' "and electron-
electron interactions. " In this paper we report the re-
sults of anomalous magnetoresistance measurements on
a number of hydrogen-doped samples of Zr2Ni metallic
glass.

The samples were prepared by the conventional
single-wheel melt-spinning technique and were doped

with hydrogen in diferent concentrations by means of an
electrolytic method. The dopant concentrations were
verified by the use of a previously established relation-
ship between the gain in resistance and the volumetrical-
ly determined hydrogen absorption. ' Magnetoresis-
tance measurements were carried out with the use of a
superconducting magnet with samples mounted on an
orientable holder contained in a separate He bath. The
temperature range covered was from 1.7 to 4.2 K in

magnetic fields up to 6 T. The results are shown in Figs.
1 and 2. We observe a decrease of anomalous magne-
toresistance with increasing temperature, in accordance
with earlier experiments on similar systems, and its in-
dependence of sample orientation as expected. The mag-
netoresistance slopes are lowered by the dopant and the
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FIG. 1. Anomalous magnetoresistance of hydrogen-doped
Zr2NiH„glasses at 4.2 K. Curves fitted to the data are calcu-
lated by use of relation (1 ).

FIG. 2. Magnetoresistance data taken with the same sam-
ples as in Fig. 1 but at 1.7 K.
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—( ,' +P)-f (4DeHr /hc)]l, (1)
where I/r'=I/r~+2/r„and D = —, t Fr Here. we de-
note by ~ and r„ the electron relaxation times for elas-
tic and spin-orbit scattering, respectively, and by i& the
electron phase-coherence time. The function f3(x) is
defined in Ref. 13. The factor P in (1) is related to the
suppression of superconducting fluctuations and in its
asymptotic form is given ' (for small fields, H/T
«7rka/2De) as

—
4 n g(T) for —g(T) )) 1,
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' rr'g'(T) for
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(T) =', (2)

where g(T) is the interaction constant for the Maki-
Thompson correction. ' In its field-independent form it
is given as g

' = —ln(T/T, ).
The solid curves fitted to the experimental data in Fig.

1 are derived on the basis of relation (1). We have as-
sumed that corrections due to the electron-electron in-
teractions in the diffusive channel are small for the tem-
perature region explored, as has been observed by oth-
ers. s The values of P(T) as determined experimentally
by fitting expression (1) to the data are plotted as a
function of the dopant concentration in Fig. 3. The
lowering of the value of P(T) is in agreement with ob-
served lowering of the superconducting transition tem-
perature by the dopant. '

saturation is shifted to lower fields.
We have analyzed our data serniquantitatively using

the theoretical model of Altshuler et al. ' The contribu-
tion of quantum interference to the anomalous magne-

~ ~ 13,14toresistance pertaining to a three-dimensional system
in the presence of spin-orbit scattering and supercon-
ducting fluctuations can be expressed as

err(H) =(e /2z h)(eH/hc) '~ [ ,' f3(4—DeHr'/hc)

The dependence of P on temperature has been calcu-
lated on the basis of superconducting transition tempera-
tures obtained in earlier measurements and from the re-
sults of Mizutani, Ohta, and Matsuda' by our using a
procedure outlined in Ref. 13 and also in a paper by Lar-
kin. ' These results, pertaining to the low-field limit, are
given in Fig. 4, together with our experimental points ob-
tained from the best-fit curves shown in Fig. 1.

The influence of the hydrogen dopant can be explained
by recalling earlier results on the resistivity. ' The in-
crease in the temperature coefficient of resistivity shows
that hydrogen enhances localization by providing addi-
tional centers of quasielastic scattering, thus reducing
the effective electron diffusion constant. The results of
the present experiment affirm this even more explicitly;
the best-fit curves in Fig. 1 give values of D and i& which
decrease with rising hydrogen concentration. Soft-x-ray
spectroscopy measurements' show that hydrogen locates
in Zr-rich sites and hybridizes with the Zr d band. It
reduces the d-band density of states at the Fermi level.
Since most of the spin-orbit scattering occurs at Zr sites,
the hydrogen reduces the effective spin-orbit contribution
to the magnetoresistance.

We also notice in Figs. 1 and 2 that at 1.7 K the curve
pertaining to the highest hydrogen concentration
(x =0.7) rises much faster in relation to the other two
curves (x =0.2 and x =0.25). This significantly
different behavior of the x =0.7 curve can be accounted
for by the fact that the hydrogen first occupies Zr-rich
sites before moving to Zr-poor ones, which begins to
happen at x) 0.4. ' ' At this point a two-level system
may form whose states "freeze" at low temperatures. (A
dip in the specific-heat curves of similar alloys at high
hydrogen concentration' may be taken as further evi-
dence for the existence of a two-level system. ) This
reduces inelastic scattering and enhances the electron lo-
calization. An alternative explanation of the behavior of
the x =0.7 data in terms of a higher Maki-Thompson
contribution must be discarded since the factor P(T)
tends to level out at high values of x (Fig. 3).
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FIG. 3. Parameter P(T) plotted as a function of hydrogen
concentration X.
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FIG. 4. Parameter P(T) plotted as a function of tempera-
ture T (in kelvins).
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In order to study the character of two-level systems in

highly doped samples we plan to obtain very accurate
low-field data at temperatures lower than those used in

the present experiment.
We conclude by aSrming that hydrogen is a good

atomic probe to study quantum interference at defects in

highly disordered systems in which specific features of
topology are revealed by preferential location of the
dopant atoms.
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