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Visualization and Characterization of Colloidal Growth from Ramified to Faceted Structures
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Uniformly sized microspheres confined to thin layers between solid boundaries are used to demon-
strate pattern formation in diffusion-controlled aggregation. Extremely slow growth processes monitored
over several months show faceted hexagonal lattices. For successively faster growth, dendritic crystals
and ramified aggregates are formed. The results are compared with recent studies of local and global

growth models.

PACS numbers: 64.60.Cn, 05.40.+j, 68.70.+w, 82.70.Dd

The formation of aggregates, dendrites, and crystals
from small subunits like atoms and colloidal particles
occurs in a wide range of phenomena in science and
technology. The models used to describe these processes
have aimed at reproducing the characteristic patterns of
the resulting structures following essentially two ap-
proaches. One is the simple diffusion-limited-aggrega-
tion (DLA) computer-simulation model initiated by
Witten and Sander.! Here, randomly diffusing particles
are made to stick irreversibly to the growing aggregate.
These computer experiments produce irregular ramified
objects which have been characterized by a Hausdorff
fractal dimension D less than the Euclidean dimension d.

The other approach relates to modeling of the dendri-
tic crystal growth and tip splitting found in undercooled
melts as studied extensively by Langer and others.? At
present there is no direct relationship found between
fractal aggregation and dendritic crystal growth, neither
analytically nor experimentally. However, extensive
computer simulations have been made to establish possi-
ble universality classes, crossover from nonequilibrium to
equilibrium behavior, and the appearance of dendritic
clusters.> Certain aspects of these problems have thus
been probed in various modifications of the initial
Witten-Sander DLA model believed to be closer to phys-
ical realizations. These include diffusion-limited cluster
aggregation (DLCA),*® cluster rotations,” lattice
effects,® disaggregation,’ surface tension,®® and wedge
formation. '

However, it remains to be seen how accurately these
deterministic computer codes reflect nature, as the num-
ber of experiments on real systems allowing direct obser-
vations are very few compared to the number of simula-
tions. As most simulations are carried out in two dimen-
sions (2D),3 experimental realizations in 2D systems are
particularly important.

The purpose of this paper is to report first experiments
that use prototypical colloidal particles to visualize a
wide range of these processes (see Fig. 1). It has thus
been possible to demonstrate the time scale involved in
going from nonequilibrium to a true equilibrium situa-
tion, and to find quantitative growth conditions produc-
ing aggregates of fractal clusters, compact clusters with

rough surfaces, dendritic or snowflakelike patterns, and
compact faceted crystals. In addition, this paper also re-
ports the first 2D DLCA experiments which may be
compared directly with recent simulations, allowing
structural readjustments® besides particle and cluster-
cluster aggregation.* Compared to recent DLA studies
of zinc electrodeposits in a plane,!! the present use of
colloidal particles provides a new level of detailed obser-
vations to gain insight into the controlling parameters for
a wider range of growth morphologies.

So far, it appears that there has been only one report
of a physical realization of diffusion-controlled aggrega-
tion of microparticles in a plane.'>!* This involved the
use of 0.3-um-diam silica spheres on a water-air inter-
face producing aggregates with fractal dimensions
D=1.20%0.15. This value is well below the simulated
value D=1.44 for DLCA,’ and attributed to anisotropic
electrostatic forces around the growing tips. Other ex-
periments on particles which have not been diffusion con-
trolled have shown aggregation induced by convection, 4
shear,! ac electric fields,'® and ac magnetic fields in
ferrofluid.!” Curiously enough, these processes have pro-
duced aggregates with fractal dimensions D==1.7, close
to the simulated DLA value and thus significantly higher
than the DLCA value D=1.44.

The present experimental system consisted of very uni-
formly sized polystyrene spheres'® with diameters a
=1.1 and 4.7 um dispersed in water and confined to
essentially one layer between two prepared glass plates.
The separation between the plates could be adjusted
evenly by use of a small fraction of larger spheres as
spacers. An inverted microscope with video-camera at-
tachment allowed direct long-term observations and digi-
tal analysis of the structure with use of a frame grabber
with 512X 512-pixel resolution.

The spheres were stabilized with a surfactant (0.1%
sodium dodecyl sulphate) and ionic strength of 0.02 mol.
The Derjaguin-Landau-Verwey-Overbeck model!® shows
that for this case the interaction potential for two
spheres will have a “‘secondary minimum” (attractive
forces) of approximately 0.3k7 and 4kT for the 1.1-um
and 4.7-um spheres, respectively. This indicates that the
1.1-um spheres will need roughly three or more neigh-
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FIG. 1. Microscope pictures of aggregated 1.1-um spheres
for various average growth periods (z), initial concentration
(p), and average growth velocity (vg) as discussed in the text:
(a) ramified clusters (=20 min, p=0.3, v,=2x10"2
um/sec), (b) “porous” cluster with rough surface (z=100 h,
p==0.7, v;=3%x10 "% um/sec), (c) dendritic crystal (r=4000
h, p==0.15, v;=10 "3 um/sec) at two different magnifications,
(d) faceted hexagonal crystal (1==4500 h, p==0.1, v,=5
x 10 7% ym/sec) with small seed crystal shown in the left inset.

bors to obtain a total bonding energy = kT to overcome
the disrupting Brownian motion, whereas the 4.7-um
spheres will readily aggregate. In one case [Fig. 1(a)l,
salt was added (0.05 mol) to the 1.1-um dispersion to
reduce the Coulomb repulsion and produce strong van
der Waals bonding.

Figure 1 displays a series of growth patterns for sam-
ples containing typically 107-10% 1.1-um dispersed
spheres. Figure 1(a) shows the usual DLCA situation
with relatively fast irreversible clustering for a sphere
concentration p==0.30 defined relative to a compact lat-
tice (for which p=1). A quantitative analysis of this
case will be presented later in this paper. Figures
1(b)-1(d) show examples of successively slower DLA
growth. Here, the growing clusters were thus so far
apart that only single spheres stuck to the aggregates
and there was no clustering of clusters.

Figure 1(b) shows a snapshot of a slowly growing ag-
gregate 100 h after initiation of the growth process with
an average growth velocity of v,=3x%10"* um/sec
(defined as the average growth of radius of gyration
from the initiation) and with a fairly high particle densi-
ty p==0.7. The particle diffusion was thus very inhibited
and the perimeter of the growing crystal was “bombard-
ed” rather uniformly by the spheres, but with a low
sticking probability. This situation is believed to be close
to the physical realization of growth according to an
Eden? or Rikvold® model. In the Eden model particles
are added at random sites at the perimeter of the grow-
ing aggregate. The Rikvold model® contains the added
features of surface tension and the effects of a screening
length /p proportional to the diffusion constant in the
medium. Considering the square lattice used in
Rikvold’s simulations, the cluster in Fig. 1(b) shows a
striking resemblance to the cluster in Fig. 3 of his paper?®
with a screening length of /p =4 lattice constants. The
irregularity of the surface has been analyzed and dis-
cussed elsewhere?! and compared with recent scaling re-
sults from simulations. 2

Figure 1(c) shows a situation of dendritic growth with
an average growth velocity of approximately v, =103
um/sec during five months. The starting concentration
in this case was relatively low (p=0.15). The overall
pattern is ‘“‘snowflakelike” with branching dendrites as
shown in the magnified picture.

Finally, Fig. 1(d) shows a nearly perfect hexagonal
single crystal (some dislocations) which has grown for a
period of about six months from an initial concentration
of p==0.1. The growth velocity here was so low (v,
=5x10"% um/sec) that a completely equilibrium situa-
tion was achieved. Observations during growth showed
that there was an even, slow layer-by-layer faceted
growth from the seed crystal shown in the left inset.

It is possible to obtain a quantitative characterization
of isolated clusters, exemplified by Figs. 1(b)-1(d),
based on the determination of a bulk and perimeter frac-
tal dimension, D, and D,, respectively, versus growth ve-
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FIG. 2. Bulk (D,) and perimeter (D,) fractal dimensions vs
growth velocity, v, for DLA of 1.1-um spheres. The bands
reflect the uncertainties in the determination of D, and D, for
a wide range of clusters. Points labeled b—d correspond to the
photographs in Fig. 1. Also marked in the figure is the bulk
simulated value for DLA and the DLCA value obtained in the
present work (Fig. 4).

locity. For this, D, was determined in the usual way?
from the relationship between the total number of parti-
cles N in the cluster and the radius of gyration Ry;

Ne«Rp: (1

Here, R, was calculated with use of

N
RI=N"'Y (r;—10)? 2)
i=1
with ro the center of mass for the cluster and the sum
taken over all particles N positioned at sites r;. The log-
log plot of NV vs R, at successive stages of growth thus
has slope D,. The perimeter fractal dimension D, was
obtained by use of the box-counting technique.® The
number of L XL square boxes Ny (L) needed to cover
the perimeter was counted and averaged over different
center points. For a fractal structure it is expected that

Neox(L) L =7, (3)
and D, may be determined from a log-log plot of
Npox(L) vs L.

On the basis of approximately one hundred growth
patterns, exemplified by Fig. 1, Fig. 2 shows the phase
diagram of DLA for 1.1-um spheres expressed as D, and
D, versus growth velocity vg. The bands in the figure
reflect the uncertainties involved in the determination of
the fractal dimension. It may be seen that both D, and
D, appear to approach the simulated DLA value 1.7 for
the fastest growth in the present experiments. As v, de-
creases, there is a crossover to the compact values D, =2
and D, =1 as expected for single-crystal growth.

The final portion of this paper will analyze in detail a
prototypical DLCA process believed to be very close to a
physical realization of the recent computer simulations
by Meakin and Jullien (MJ).> Their model allows for
cluster-cluster aggregation as well as cluster rotations
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FIG. 3. DLCA of 4.7-um spheres (p=0.14) showing (a)
crystalline behavior on short length scales and (b) ramified
clusters on large length scales.

around points of contact. For these experiments 4.7-um
spheres were used. The clustering was slow because of
small Brownian motion but irreversible because of the
secondary potential minimum discussed earlier. Figure 3
shows the aggregates formed after 24 h from an initial
concentration of dispersed spheres of p=0.14. Direct
observations during the growth process showed that the
spheres stuck fairly close to where they came in close
contact with the aggregate. There was a tendency for
some rearrangement of the spheres by migration from
the first nearest-neighbor site reached to an energetically
more favorable neighbor site. During the clustering-of-
clusters process, there was also a rotation of clusters
around the point of contact. The rotations predominant-
ly went in the direction of the smallest angle to make
closed loops with a second point of contact for the clus-

LOG N
4

0.0 05 10 15 2.0
LOG Rg

FIG. 4. Determination of fractal dimension D for DLCA
clusters in Fig. 3 by use of the radius-of-gyration method as
discussed in the text. Ry is expressed in units of sphere diame-
ter (4.7 um).
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ters. The combination of these processes thus produced
crystalline behavior on small length scales as shown in
Fig. 3(a), but ramified clusters on larger length scales as
shown in Fig. 3(b). This is still only a tiny fraction of
the total sample containing about 10 spheres.

The quantitative analysis of the DLA structures was
carried out with use of the two methods discussed earlier
to determine the fraction dimension D. In Fig. 4, the
radius-of-gyration method produces a log-log plot of NV
vs Ry with slope D =1.49 £0.06. Here, R, is expressed
in units of sphere diameter @ =4.7 um. An independent
check of D was obtained by use of the box-counting
method for which the number of boxes Ny (L) contain-
ing any part of the cluster was counted and averaged
over different center points. A log-log plot of Nyox(L) vs
L thus produced a slope D=1.48 =0.05 for box sizes
L=2-100 sphere diameters. From these estimates I
therefore conclude that D=1.49 + 0.05.

This result may be confronted with the MJ simula-
tion.> In particular, the aggregates in Fig. 3(a) show a
striking resemblance to Fig. 4 in MJ’s paper. Their
model in this case corresponds to the observations in the
present system with cluster-cluster aggregation and rigid
rotation of clusters around points of contact as discussed
above. The MJ fractal dimension for this case was found
to be D=1.485+0.015 by means of the radius-of-
gyration method and thus very close to the value found
for the present system. As noted in MJ’s paper,’ it is
possible that in the limit of large clusters (V— o),
the value for D allowing for rotation could decrease to
their cluster-cluster-aggregation value D =1.438 & 0.005
without rotations. Thus, rotations have a compacting
effect on relatively small length scales but could be
insignificant on large length scales. This effect and a
general scaling description of the cluster size distribu-
tion?2 for the present system is discussed elsewhere.?!

In summary, it has been possible for the first time to
demonstrate colloidal growth from disordered to dendri-
tic to faceted structures. The observations support the
importance of small sticking probability or low growth
velocity combined with surface-tension effects to reach
the equilibrium aggregation situation. The results also
support recent model simulations with an algorithm in-
cluding cluster-cluster aggregation as well as cluster ro-
tations.
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FIG. 1. Microscope pictures of aggregated 1.1-um spheres
for various average growth periods (¢), initial concentration
(p), and average growth velocity (vg) as discussed in the text:
(a) ramified clusters (=20 min, p=0.3, v,=2x10"?
um/sec), (b) “porous” cluster with rough surface (r =100 h,
p=0.7, vg=3x10"* um/sec), (c) dendritic crystal (r=4000
h, p=0.15, 1,=10 "% um/sec) at two different magnifications,
(d) faceted hexagonal crystal (r=4500 h, p=0.1, v,=5
x 10 =% um/sec) with small seed crystal shown in the left inset.
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FIG. 3. DLCA of 4.7-um spheres (p=0.14) showing (a)
crystalline behavior on short length scales and (b) ramified
clusters on large length scales.



