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We study the onset of the Taylor instability for colloidal crystals in a narrow-gap Couette cell. There
is a natural competition between the radial flow required for Taylor rolls and the resistance to such
motion caused by the anisotropy of the flowing solid. A new, combined Taylor-shear-melting instability
is found at rotation rates above those expected for the formation of rolls, but below the shear rate re-
quired for shear melting in the absence of the Taylor instability. The control parameter for the shear-
melting transition appears to be a critical shear stress rather than the shear rate.

PACS numbers: 62.20.—x, 47.20.—k, 64.70.Dv

Colloidal crystals, comprised of charged polystyrene
spheres in aqueous suspension, or “polyballs,” are good
model systems for studying the equilibrium and dynamic
properties of conventional solid and liquids because of
the controllability of both the interparticle interactions
and the particle density. !> They also exhibit phenomena
previously unobserved in other materials. Recent in-
terest has centered on the shear-melting transition,
which is not as yet fully understood.3-® Primarily be-
cause of the low particle density, ~ 10'3/cm?3, the elastic
constants of colloidal crystals are very small,” ~1-1000
dyn/cm?. Thus colloidal crystals can flow easily under a
relatively small shear stress. However, their rheological
behavior is both highly non-Newtonian and anisotropic.
As the shear is increased, a transition, or series of transi-
tions, is observed. These are characterized by a loss of
the opalesence caused by Bragg scattering from the crys-
talline phase,3™> and a jump in the viscosity.*® Most
models for this solid-to-liquid shear-melting transition
assume that it is controlled solely by the local shear
rate.>>6

In this Letter, we discuss the onset of the Taylor insta-
bility in Couette flow of colloidal crystals. The aim of
the experiments was twofold, both to study the shear-
melting transition in the presence of stresses aside from
simple shear, and to study the effect of non-Newtonian,
anisotropic fluid on the Taylor instability.® The anisot-
ropy arises when the colloidal crystal is subjected to suf-
ficient shear to cause it to flow, but insufficient to cause
it to undergo shear melting. The flowing solid can be de-
scribed either as a sliding of ordered planes,® or by dislo-
cation motion.!®!! In either case, one expects a highly
anisotropic response to an incremental stress, with a
lower effective viscosity along the direction of the flow
than along the direction of the velocity gradient. The
onset of the Taylor instability and the formation of rolls
is induced by the centrifugal forces which cause an addi-
tional, radial motion in the direction of the velocity gra-
dient. For colloidal crystals this leads to a natural com-
petition between these forces and the tendency of the

flowing solid to maintain its density wave and rigidity in
this direction. Also, the centrifugal forces can induce
additional stresses, resulting in a possible modification of
the shear-melting transition. Thus one might expect the
Taylor instability to occur at a critical Taylor number
dictated by some effective viscosity for the non-
Newtonian, flowing solid, with the crystal planes aligned
with the rolls. Alternatively, if the solid is sufficiently
rigid one might expect suppression of the Taylor rolls un-
til the shear-melting transition, when the fluid becomes
more isotropic.

Instead the present experiments show that the Taylor
instability and the shear-melting transition occur simul-
taneously. Furthermore, this new Taylor-shear-melting
transition occurs at a critical rotation frequency consid-
erably higher than expected for the Taylor instability,
while the critical shear rate is substantially smaller than
that expected for shear melting. This implies that the
shear-melting transition is not controlled solely by the lo-
cal shear rate, but depends on the actual flow pattern
and the stresses generated. In fact, the experiments sug-
gest that the shear melting is controlled by the shear
stress rather than the shear rate.

The experiment was performed in a conventional
narrow-gap Couette cell with inner radius R =4.765 cm,
gap d=0.315 cm, and height —~20 cm. The colloidal
sample consisted of polyballs 0.091 yum in diameter at
2.5% volume fraction. The geometry and polyball sam-
ple were chosen so that the onset of the Taylor instability
would occur at a lower rotation rate than required to
cause shear melting of the sample in contrast to a previ-
ous study.!'? In Fig. 1 we show the curve of shear stress
versus shear rate for a typical sample used in this study.
The measurement was made in a Zimm viscometer with
a sufficiently small gap that the Taylor instability occurs
at high shear rates and is not observed. Below 200 Hz
the flowing solid shows a highly non-Newtonian behav-
ior. The shear-melting transition is signaled by the rapid
increase in stress o at a shear rate y~260 Hz. Above
the transition, the liquid has a higher viscosity, v, either
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FIG. 1. Shear stress vs shear rate for a 2% volume fraction
sample of 0.091-um polyballs. The 7;’s are the predicted shear
rates for Taylor roll onset from various criteria. Circled plus is
the effective stress and actual rate at which the combined
Taylor-shear-melting instability occurs.

chordal (o/y) or differential (85/87), than the solid.

In our Couette cell the shear rate is approximately
constant and is related to the angular velocity of the
inner cylinder, Q, by y~QR/d. In narrow-gap
geometry with only the inner cylinder rotating the Tay-
lor number has the limiting form T=02Rd3/v2.%!3 The
onset of the Taylor instability occurs at a critical value,
T.=1700. Thus by determining the critical rotation
rate, Q., we can measure the critical shear rate, y., and
infer an effective viscosity, v., of the fluid at the onset of
the Taylor instability. These are y.= 112 Hz and
v. = 0.07 poise. It is instructive to compare these num-
bers with the results in Fig. 1 obtained from the Zimm
viscometer. Taking v, 7. as o, == 7.8 dyn/cm?, the effec-
tive shear stress at the instability, we have plotted
(y.,0.) in Fig. 1.

By comparison, we can use different values of the
viscosity together with the condition 7, = 1700 to deter-
mine the shear rate at which the Taylor instability alone
might have been expected [i.e., we take y; =(T.Rv?/
d>)'2]. The expected 7’s are shown on the abscissa of
Fig. 1. If we use the differential viscosity of the shear-
melted liquid, we obtain yyq. If we require a form of
self-consistency, then we must choose a shear rate which
would give 7"=1700 using a viscosity at that shear rate.
If we choose the chordal viscosity the result is ¥chord.
Similarly, with use of the differential viscosity the result
is ydirr. The actual shear rate at which the combined
Taylor-shear-melting transition occurred, y., is higher
than any rate expected for the Taylor instability. This
indicates that the anisotropy of the flowing solid plays a
crucial role in suppressing the Taylor instability. Fur-
thermore, the sample undergoes shear melting at a con-
siderably lower rate than that which would produce
shear melting in the absence of the Taylor instability.
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FIG. 2. Upper curve is the phase boundary between flowing
solid and shear-melted liquid for outer-cylinder rotation.
Lower curve is the phase boundary between flowing solid and
shear-melted liquid with Taylor rolls for inner-cylinder rota-
tion.

This indicates that the shear rate is not the only control
parameter for the shear-melting transition.

The most dramatic and direct proof that the Taylor
instability has a profound effect on the shear-melting
transition is provided by an experiment comparing the
rate at which shear melting occurs, ¥sm, for the same
sample in the same Couette cell when either the inner or
the outer cylinder was rotating. When the shear is es-
tablished by rotation of the inner cylinder, the centrifu-
gal forces induce the Taylor instability, while if the same
shear is established by rotation of the outer cylinder, no
instability occurs. The measured ys,’s for each case are
shown in Fig. 2 as a function of electrolyte concentra-
tion. The upper curve (plusses) represents the phase
boundary between the shear-melted liquid and the flow-
ing solid with the outer cylinder rotating and thus in the
absence of destabilizing centrifugal forces. The lower
curve (squares) marks the phase boundary between the
flowing solid and the shear-melted liquid with Taylor
rolls, for inner-cylinder rotation. As electrolyte was add-
ed to decrease the strength of the interparticle interac-
tions, the critical rotation rate for shear melting with
Taylor rolls remained considerably below that without
Taylor rolls, until the samples melted in zero shear, at
~12 uM HCL.

With T, = 1700, as appropriate for our geometry, the
observed Q. for the combined Taylor-shear-melting
transitions implies that the viscosity for the liquid phase
just above the transitions is substantially higher than any
viscosity measured for the samples (in either the solid or
liquid states except at very low y), in the absence of the
Taylor instability. This is indicated by the open circle
corresponding to (y.,0.) in Fig. 1, which lies well above
the stress-rate curve. To see whether such large viscosi-
ties, and concomitant shear stresses, exist in the presence
of the Taylor rolls, we constructed an apparatus capable
of measuring the shear stress in the wall of the Couette
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FIG. 3. In situ measurement of the stress vs rate on the
outer wall of the Couette cell for different electrolyte concen-
trations in micromoles HCl. For 18 uM HCI, the sample is
melted in the absence of any shear.

cell. Briefly, a thin disk of ~0.5-cm diameter is placed
in a hole of ~0.51-cm diameter in the outer cylinder.
The disk is flush with the inner surface to ~0.05 cm and
is supported on a thin rod which goes through a mem-
brane to a chamber outside the cell. The chamber is
filled with a liquid to equalize the pressure across the
membrane. The rod is attached to a mirror mounted on
a torsion fiber. A shear stress at the wall of the Couette
cell causes a displacement of the inner disk, which in
turn displaces the mirror. This displacement is measured
by monitoring of the reflection of a laser with a
position-sensitive photodiode. The apparatus is calibrat-
ed by measurements on Newtonian fluids with well-
characterized viscosities.

Typical examples of the curves of stress versus rate ob-
tained are shown in Fig. 3 for samples with varying elec-
trolyte concentration. At low y the shear stress increases
smoothly with the shear rate corresponding to the flow-
ing solid. Then a sharp increase of the shear stress indi-
cates the onset of the Taylor-shear-melting transition.
Note that this jump is much more abrupt than that seen
when shear melting occurs without the Taylor rolls (Fig.
1) or when a Taylor instability occurs in a Newtonian
fluid, when there is simply a slope change, as seen for the
liquid sample (Fig. 3, 18 uM). This demonstrates that
the shear stress (and hence viscosity) is indeed higher at
Q., as required for T.. Note also that the “wavy Tay-
lor” instability characterized by the oscillations in the
curves at high y occurs at ~1.16Q,. This is the same
factor as for conventional fluids in this geometry, sug-
gesting that the radial velocity is small at the onset of
the Taylor instability as it is for conventional Taylor
rolls, and as observed visually. This also adds credence
to the description of the Taylor-shear-melted liquid as a
nearly Newtonian fluid with a high viscosity.
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FIG. 4. Critical Taylor number vs electrolyte concentration
from a set of stress-rate curves as in Fig. 3.

The observation that the radial and axial velocities in
the Taylor rolls are small at the onset shows that the to-
tal local shear rate in the Taylor-shear-melted liquid is
essentially that determined by the rotation frequency of
the inner cylinder. Since this shear rate is —2-3 times
less than that required for shear melting when the outer
cylinder is rotating, we have demonstrated that the shear
rate is not the universal control parameter for determin-
ing the shear-melting transition. This suggests that the
theories for this transition need revision.

Without an adequate theory of the shear-melting tran-
sition we cannot give detailed explanation for the com-
bined Taylor-shear-melting transition. However, we can
phenomenologically predict the rotation rate at which
the transition occurs. To obtain the appropriate value of
the viscosity of the liquid phase just above the transition,
we use the stress measured just above the transition and
divide by the rate at the transition. This results in the
expected value for 7, for our geometry, as shown in Fig.
4 for the data from Fig. 3. (We do not yet understand
the anomalously high value which occurs in most freshly
deionized samples in the absence of added electrolyte.)
Moreover, the shear stress at the transition measured in
the Couette cell is, within our experimental calibration
error (+20%), the same stress at shear melting as we
observe in the Zimm viscometer without the Taylor in-
stability. Thus we can measure the critical shear stress
from data of the sort shown in Fig. 1, define an effective
viscosity at the transition, Vefr= Osm/¥T-sm,» and correctly
predict the combined Taylor-shear-melting transition at
an Q. given by T.=0.*R3/0qn=1700. Note that
o.~osm in Fig. 1. This observation suggests that the
shear-melting instability may be controlled by the stress
rather than the rate when different flow configurations
are used. Any model for the shear melting must proper-
ly account for this.
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