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Competition between Shear-Melting and Taylor Instabilities in Colloidal Crystals
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We study the onset of the Taylor instability for colloidal crystals in a narrow-gap Couette cell. There
is a natural competition between the radial flow required for Taylor rolls and the resistance to such
motion caused by the anisotropy of the flowing solid. A new, combined Taylor-shear-melting instability
is found at rotation rates above those expected for the formation of rolls, but below the shear rate re-
quired for shear melting in the absence of the Taylor instability. The control parameter for the shear-
melting transition appears to be a critical shear stress rather than the shear rate.

PACS numbers: 62.20.—x, 47.20.—k, 64.70.Dv

Colloidal crystals, comprised of charged polystyrene
spheres in aqueous suspension, or "polyballs, " are good
model systems for studying the equilibrium and dynamic
properties of conventional solid and liquids because of
the controllability of both the interparticle interactions
and the particle density. ' They also exhibit phenomena
previously unobserved in other materials. Recent in-
terest has centered on the shear-melting transition,
which is not as yet fully understood. Primarily be-
cause of the low particle density, —10' /cm, the elastic
constants of colloidal crystals are very small, —1-1000
dyn/cm . Thus colloidal crystals can flow easily under a
relatively small shear stress. However, their rheological
behavior is both highly non-Newtonian and anisotropic.
As the shear is increased, a transition, or series of transi-
tions, is observed. These are characterized by a loss of
the opalesence caused by Bragg scattering from the crys-
talline phase, and a jump in the viscosity. Most
models for this solid-to-liquid shear-melting transition
assume that it is controlled solely by the local shear
rate. "'

In this Letter, we discuss the onset of the Taylor insta-
bility in Couette flow of colloidal crystals. The aim of
the experiments was twofold, both to study the shear-
melting transition in the presence of stresses aside from
simple shear, and to study the effect of non-Newtonian,
anisotropic fluid on the Taylor instability. The anisot-
ropy arises when the colloidal crystal is subjected to suf-
ficient shear to cause it to flow, but insufficient to cause
it to undergo shear melting. The flowing solid can be de-
scribed either as a sliding of ordered planes, or by dislo-
cation motion. ' " In either case, one expects a highly
anisotropic response to an incremental stress, with a
lower effective viscosity along the direction of the flow
than along the direction of the velocity gradient. The
onset of the Taylor instability and the formation of rolls
is induced by the centrifugal forces which cause an addi-
tional, radial motion in the direction of the velocity gra-
dient. For colloidal crystals this leads to a natural com-
petition between these forces and the tendency of the

flowing solid to maintain its density wave and rigidity in
this direction. Also, the centrifugal forces can induce
additional stresses, resulting in a possible modification of
the shear-melting transition. Thus one might expect the
Taylor instability to occur at a critical Taylor number
dictated by some effective viscosity for the non-
Newtonian, flowing solid, with the crystal planes aligned
with the rolls. Alternatively, if the solid is sufficiently
rigid one might expect suppression of the Taylor rolls un-
til the shear-melting transition, when the fluid becomes
more isotropic.

Instead the present experiments show that the Taylor
instability and the shear-melting transition occur simul-
taneously. Furthermore, this new Taylor- shear-melting
transition occurs at a critical rotation frequency consid-
erably higher than expected for the Taylor instability,
while the critical shear rate is substantially smaller than
that expected for shear melting. This implies that the
shear-melting transition is not controlled solely by the lo-
cal shear rate, but depends on the actual flow pattern
and the stresses generated. In fact, the experiments sug-
gest that the shear melting is controlled by the shear
stress rather than the shear rate.

The experiment was performed in a conventional
narrow-gap Couette cell with inner radius R =4.765 cm,
gap d=0.315 cm, and height —20 cm. The colloidal
sample consisted of polyballs 0.091 pm in diameter at
2.5% volume fraction. The geometry and polyball sam-
ple were chosen so that the onset of the Taylor instability
would occur at a lower rotation rate than required to
cause shear melting of the sample in contrast to a previ-
ous study. ' In Fig. 1 we show the curve of shear stress
versus shear rate for a typical sample used in this study.
The measurement was made in a Zimm viscometer with
a sufficiently small gap that the Taylor instability occurs
at high shear rates and is not observed. Below 200 Hz
the flowing solid shows a highly non-Newtonian behav-
ior. The shear-melting transition is signaled by the rapid
increase in stress a. at a shear rate y —260 Hz. Above
the transition, the liquid has a higher viscosity, v, either
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FIG. 1. Shear stress vs shear rate for a 2% volume fraction
sample of 0.091-pm polyballs. The y s are the predicted shear
rates for Taylor roll onset from various criteria. Circled plus is
the effective stress and actual rate at which the combined
Taylor- shear-melting instability occurs.

chordal (a/y) or differential (Bcr/tl y), than the solid.
In our Couette cell the shear rate is approximately

constant and is related to the angular velocity of the
inner cylinder, 0, by y —QR/d. In narrow-gap
geometry with only the inner cylinder rotating the Tay-
lor number has the limiting form T= QzRd /v . ' The
onset of the Taylor instability occurs at a critical value,
T, =1700. Thus by determining the critical rotation
rate, A„we can measure the critical shear rate, y„and
infer an effective viscosity, v„of the fluid at the onset of
the Taylor instability. These are y, = 112 Hz and
v, =0.07 poise. It is instructive to compare these num-
bers with the results in Fig. 1 obtained from the Zimm
viscometer. Taking v, y, as a, = 7.8 dyn/cm, the effec-
tive shear stress at the instability, we have plotted
(y„a, ) in Fig. 1.

By comparison, we can use different values of the
viscosity together with the condition T, = 1700 to deter-
mine the shear rate at which the Taylor instability alone
might have been expected [i.e. , we take y; =(T,Rv;/
ds)'~ ]. The expected y's are shown on the abscissa of
Fig. 1. If we use the differential viscosity of the shear-
melted liquid, we obtain y~;q. If we require a form of
self-consistency, then we must choose a shear rate which
would give T=1700 using a viscosity at that shear rate.
If we choose the chordal viscosity the result is y,h„d.
Similarly, with use of the differential viscosity the result
is yd'ff. The actual shear rate at which the combined
Taylor-shear-melting transition occurred, y„ is higher
than any rate expected for the Taylor instability. This
indicates that the anisotropy of the flowing solid plays a
crucial role in suppressing the Taylor instability. Fur-
thermore, the sample undergoes shear melting at a con-
siderably lower rate than that which would produce
shear melting in the absence of the Taylor instability.

FIG. 2. Upper curve is the phase boundary between flowing
solid and shear-melted liquid for outer-cylinder rotation.
Lower curve is the phase boundary between flowin solid and
shear-melted liquid with Taylor rolls for inner-cylinder rota-
tion.

This indicates that the shear rate is not the only control
parameter for the shear-melting transition.

The most dramatic and direct proof that the Taylor
instability has a profound effect on the shear-melting
transition is provided by an experiment comparing the
rate at which shear melting occurs, y, , for the same
sample in the same Couette cell when either the inner or
the outer cylinder was rotating. When the shear is es-
tablished by rotation of the inner cylinder, the centrifu-
gal forces induce the Taylor instability, while if the same
shear is established by rotation of the outer cylinder, no
instability occurs. The measured y,m's for each case are
shown in Fig. 2 as a function of electrolyte concentra-
tion. The upper curve (plusses) represents the phase
boundary between the shear-melted liquid and the flow-
ing solid with the outer cylinder rotating and thus in the
absence of destabilizing centrifugal forces. The lower
curve (squares) marks the phase boundary between the
flowing solid and the shear-melted liquid ~ith Taylor
rolls, for inner-cylinder rotation. As electrolyte was add-
ed to decrease the strength of the interparticle interac-
tions, the critical rotation rate for shear melting with
Taylor rolls remained considerably below that without
Taylor rolls, until the samples melted in zero shear, at—12 pM HCl.

With T, = 1700, as appropriate for our geometry, the
observed 0,, for the combined Taylor-shear-melting
transitions implies that the viscosity for the liquid phase
just above the transitions is substantially higher than any
viscosity measured for the samples (in either the solid or
liquid states except at very low y), in the absence of the
Taylor instability. This is indicated by the open circle
corresponding to (y„a, ) in Fig. 1, which lies well above
the stress-rate curve. To see whether such large viscosi-
ties, and concomitant shear stresses, exist in the presence
of the Taylor rolls, we constructed an apparatus capable
of measuring the shear stress in the wall of the Couette
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