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Interaction of Magnetoexcitons in Two-Dimensional Structures
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The interaction and the formation of bound states of magnetoexcitons in two-dimensional structures
with a fully filled Landau level is investigated. A rich spectrum of bound states with a substantial bind-
ing energy e'/cl with respect to the cyclotron energy 2hcv, is found. The dispersion of these states as a
function of the total momentum is studied.
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There have recently been several studies of the collec-
tive particle-hole excitations in a two-dimensional elec-
tron gas in a strong external magnetic field' for fully
filled Landau levels. These 2D "magnetoexcitons" are
very interesting objects in that they exhaust all the spec-
tral weight of the particle-hole excitations; there is no
single particle-hole continuum in the excitation spec-
trum. These excitations also seem to be general in that
similar excitations occur for fractionally filled Landau
levels and for quasi-2D systems. At any finite temper-
ature, many of these excitations will be thermally excit-
ed. It is thus important to understand how the excita-
tions interact with each other.

The magnetoexciton dispersion exhibits a rotonlike
minimum at a finite wave vector q =q =-2.2l ' (l is

the cyclotron radius) and hence a local maximum in its
density of states at the corresponding energy. A similar
local maximum in the density of states is thought to
enhance the formation of the two-roton bound state in

He and the two-phonon bound states in solids" even
though the question of their existence has not been set-
tled. It is of interest to investigate if a similar bound
state exists in the present case. The present problem is
much better characterized and simpler numerically; the
answer will thus be quite unambiguous. The possible
formation of bound states of magnetoexcitons can also be
regarded as the formation of a kind of molecule. Mole-
cules formed from excitons that are made from particles
in the conduction band and holes in the valence band in

strong magnetic fields in 3D systems have been investi-
gated previously in a variational calculation. It is found
that exchange is the dominant cause of binding. The
present problem is simpler in that the degree of freedom
associated with the motion in the z direction is absent.
We are thus in a unique position in that we can diago-
nalize the Hamiltonian directly.

I found a rich excitation spectrum. The lowest excita-
tion occurs with zero momentum, q =0, at an energy of
e /el with respect to the cyclotron energy 2hco, . For the
GaAs heterojunctions, on which the fractional quantized
Hall eAect has been discovered by Tsui et al. , the fully
filled condition occurs at a field strength of 50 kG. For

this case, r =(e /sl)/Aco, =0.6. When r is large, there
is strong mixing between Landau levels by the Coulomb
energy. The calculation in this paper provides a quanta-
tive criterion for when the mixing between the Landau
levels will be important.

For q =0, the eigenvalues are characterized by the an-
gular momentum n with n even. For n =0, two discrete
eigenvalues can be discerned. The eigenfunctions for
these bound states indicate increased separation of the
magnetoexcitons as the binding energy is decreased. On
the other hand, there is no particular evidence which in-
dicates an unusually large amplitude with q close to q
the rotonlike minimum. This could be due to the large
magnitude of the Coulomb interaction at small q, which
counterbalances the large density of states at intermedi-
ate values of q. An examination of the eigenfunctions
for the "unbound" states indicates a large spatial separa-
tion of the magnetoexcitons. However, it also exhibits a
complicated structure, indicating substantial scattering
between them. My result should be measurable experi-
mentally with such techniques as light scattering. Be-
cause the energy is quite well separated from integer
multiples of the cyclotron energy, there should not be
any ambiguity in identifying them. I will now describe
the details of the calculation.

The magnetoexciton consists of a particle in the first
Landau level separated by a distance q from a hole in the
zeroth Landau level, the two moving together with
momentum q in a direction perpendicular to their sepa-
ration. Its wave function in first-quantized form is given
by

I q &
= (i/2lV) "~g exp( —

q C, )v,' I 0&,

where one sums over all particles labeled by indices j.
Here IO& is the state with lowest Landau level fully
filled. C is the center-of-gyration operator. It is like a
position operator but does not change the occupation of
the Landau levels. v is the velocity operator v +iv~. It
increases the Landau-level index by 1. From momentum
conservation, states with diff'erent q are not coupled to
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each other. The single-exciton energy is equal to'

E2q =0.5 q exp
—

q
2

+J dp [1 —Jo(pq ) ] (2 —p )exp P
2

]/2
7r=0.5
2

(1+q /2)Io(q /4) —
q I~ (q /4)

2

The basis states with two excitons can be formed from a product of these as

I q ~, qq) = (I/2N ) +exp( —
iq~ C, )vs~exp( —iqz C~) v~~

I
0).

We have excluded the possibility with j =1 where a single electron is excited to the second Landau level. Our basis
states are not entirely orthogonal; indeed,

(q~, qq I q3, q4& =g =2z6(q
~

—q3)+2+6(q& —q4) —2cos[(qt xq3+q2xq4)/2]/N.

Hence it is necessary to solve the generalized eigenvalue problem

g' H(q&, q
—

q&,qI, q
—qI)a(qI) =Eg' (q&, q

—
q& I qI, q

—qI)a(q, ).

I have included only the basis state
I q ~, q2) and not

I q2, q ~) since they are proportional to each other. In my numerical
calculation, this is achieved by taking the x axis to lie along the total momentum q and demanding that
L/2+

I q I/2 & q~„& I q I/2 (periodic boundary condition assumed). This restriction is indicated by the prime over the
sum in the above equation. The single-particle part of the Hamiltonian, g v, /2m, provides for a constant term 2hco, .
I shall measure the energy with respect to this from now on. The Hamiltonian is then just the Coulomb potential
H=g, & r~ ', where r ' =& d p v(p)exp(ip r); U(p) =(2') '. The Hamiltonian matrix coupling two magnetoex-
citons with each other is a sum of the pairwise interaction between the individual constituents that make up the excita-
tion, viz.

(q&, q2 I
H

I q, , q4) = V(12,34)+ V(21, 34)+ V(12,43)+ V(21,43),

where

V(12, 34) = ~d p exp( p /2)v(p) [S'(p, p+q& —q3, q&
—q4)

x exp [ipx (q2+ q3)/2 —
iq& x q4/2 —iq2 x q3/2] (I —

I p I
~/2)

+S'(qi q4. q2 p p q3) I p I
'exp[ipx (q, —q3)/2 —

iq& xq4/2]/2I.

Here S' is a three-particle correlation function defined by

(2)

S'(a, b, c) =(1/N) g (0
I exp(ia C;)exp(ib C~)exp(ic Cl) IO).

l&i wj

When the Landau level is fully filled, the excitations in Eq. (1) involve the velocity operators v . In the calculation of
the Hamiltonian matrix elements, they need to be paired up with their Hermitian conjugates. Thus the six difrerent
electron labels in the matrix element get paired up and only three-point functions are necessary. For a partially filled
Landau level, no velocity operators are present and a six-point function may be necessary. The three-point function is
quite dificult to calculate for a partially filled band. For a filled band, they can be computed exactly as

S'(a, b, c) =[(2~) 8(b)8(c) —2+8(a) —2+6(b) —2+6(c)+exp(iaxb/2)+exp( —iaxb/2)]/N.

Substituting this expression for S' back into Eq. (2) I obtain

V =exp [ —iq2 & q3+ iq x (q3 —
q2 )/2]

x [E(q~)2~&(qz —q3)+f3(qz, 2 )+f3(q3, 2 ) —exp( q2/2) I q2I/2 —exp( —q3/2) I q3I/2+(~/2) '"/2]/N

—exp[iq x (q3 —q2)/2 —(q3 —q2) '/2](1 —
I (q3 —q2) I

'/2)/I q3
—

q2 I
N

+exp[iqx (q3 —q2)/2]f2(q3 —q2, —,
' ) (3)
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where

f& =f i f2/—2, f ~ (q, a) =0.5(rr/a) ' Io(q /8a)exp( —
q 2/8a),

f2(q, a) =0.5(rr/a)' exp( —
q /8a)[Io(q /8a)(0. 5/a —

q /8a2)+It(q2/8a)q2/8a2].

The special case q =0 is particularly instructive. One can exploit the rotational symmetry to simplify the problem
and reduce the number of degrees of freedom to one. This will serve as a standard by which we can gauge the conver-
gence of the calculation for finite q, which is much more diScult numerically. The Hamiltonian in the subspace of an-
gular momentum n is thus given by

0'=rrIE(q2)~()q2I —
I qs I )/q2 —fs(q2, q3, n)+f4(q2, q3, n)

+J„(qzq3) Lf3(qz, —,
' )+f3(qs, —,

' ) —exp( —q2/2) ) q2) /2 —exp( —q3/2) ) q3) /2+ (rr/2) '~ /2)$/A'

+ (q2 —q2),

f4(q2, q3, n) =„J„(pqs)J„(qpq)exp( —p /2)p dp,

fs(qz. q3, n) =2 d+(
I q2

—
q3 I

' —
I q2

—
q3 I/»exp( —

I q2
—

q3 I
'/2)cos(n+).

There cannot be any state for odd n because q3
—

q3
should produce the same state! In general f4 can be
written down in terms of special functions. The result-

ing expression is not very convenient computationally. I
have thus evaluated the integral numerically. A mesh
size of 6p =0.4 and an upper limit p =5 is found to be
adequate. For q2=q3=0, f4=(rr/2)' =1.2533. Our
numerical results agrees with this value to within 1%.

In the same spirit, the overlap matrix element can also
be expressed for circularly symmetric states.

I have diagonalized the matrix with the overlap in two

ways. First, I diagonalize the equation with the EISpACK

subroutines. The basis set is overcomplete. This over-

completeness could cause a numerical problem in that
the subroutine may become unstable. This instability
does not arise provided the mesh is small enough (0.05)
and the range of q~ is not too big ( & 4). Second, I have
diagonalized the overlap matrix, discarded those basis
states with zero eigenvalues since they correspond to the
overcomplete set, and reexpressed the Hamiltonian in

terms of the eigenfunctions corresponding to the nonzero
eigenvalues of the overlap operator. The "renormalized"
Hamiltonian is then diagonalized. The lowest seven ei-
genvalues for the zero-angular-momentum manifold for

6q =0.1 and q.max
= 16 are —0.97, —0.63, —0.39,

—0.26, —0.18, —0.12, —0.075. Note that the two-

particle density of states at q =0 is essentially the Ra-
man spectrum. I have examined the density of states of
my calculation. In addition to the bound states, I found
that the "continuum" is quite spread out up to 3.7 with a
peak at an energy of 3.

The renormalized wave function g(q) for the lowest
two eigenstates is shown in Fig. 1. These wave functions
exhibit oscillations with a period that is the inverse of the
average separation between the magnetoexcitons. As the
state becomes less bound, the period shortens, indicating
that the magnetoexcitons are further apart. The damp-
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FIG. t. The wave function g(q) as a function of q for the
lowest two eigenvalues for q =0 and 1=0.

!
ing of the wave functions in q space becomes less as the
state becomes less bound. The wave function for a state
with an energy in the "continuum" region exhibits rapid
oscillation close to the origin. The damping, if any, is
very slow in q space.

At q =0, my basis states in Eq. (I) are also coupled to
the ground state. I found that the change in energy of
the state ) q~,

—q~) due to the coupling to the ground
state is at most (r/22)(e /al). The second-order correc-
tion to the ground-state energy is equal to (r/16)e /el.
These are small numbers in the weak coupling limit of
small r.

For a finite q, the angular momentum is no longer a
good quantum number; I have to diagonalize the full 2D
Hamiltonian instead. Because of the increase in dimen-
sion, it is not possible to perform a calculation numeri-
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cally as accurate as for the case with q =0. The Hamil-
tonian is still symmetric with respect to a reflection with

q as the mirror line. Once this symmetry is incorporat-
ed, the Hamiltonian turns from a complex Hermitian
operator to a real symmetric operator. This saves the re-
quired computer memory by a factor of 4. With a mesh
size 6'q„~~~ =0.25 and a maximum deviation from q,
hq ~~~ =5, I have diagonalized the 2D Hamiltonian. For
q =0 the lowest eigenvalue is —1. This is within 2% of
the lowest eigenvalue that I have obtained for the l =0
solution and I consider this a reasonable compromise be-
tween numerical accuracy and eSciency. The eigen-
functions agree qualitatively with that from the l =0
solution. However, because of the square-boundary con-
dition that I have imposed the eigenfunctions are no
longer circularly symmetric. It is also much more
difficult to separate the discrete from the continuous
spectrum for two reasons. First, all the eigenvalues of
the difI'erent angular momentum components now have
entered into the picture and this creates an impression of
a dense set in those regions where the eigenvalues are
discrete. Second, limited by the size of the computation
I am unable to investigate as wide a range of q as for the
I =0 calculation. The continuum states are usually quite
spread out in q space. Their eigenvalues are changed by
the boundary eAects. The lowest eigenvalue is still easily
identifiable, however. I found the lowest eigenvalues to
be equal to —1, —0.72, —0.665, —0.643 for q =0, 0.5,
1, 1.5, respectively. There is thus a dispersion at small q
which then flattens out.

To summarize, I have studied the interaction between
magnetoexcitons and found a rich spectrum of bound
states. These states should be measurable experimental-
ly. Corresponding bound states may also exist in quasi

2D structures and remain to be investigated. In this pa-
per, I have assumed that the external magnetic field is so
strong that all spins are lined up. The above calculations
can be extended to include the effect of spins similar to
the calculations of Kallin and Halperin. '
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