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Vortex-Front Propagation in Rayleigh-Benard Convection
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We present experimental measurements of the velocity of a convective vortex front propagating into

an unstable conductive state in a Rayleigh-Benard system for the wide range of e (e=AT/hT, —1) be-

tween 4X10 and 2.5x10 '. The results are found to be in excellent quantitative agreement with the

theoretical predictions following from an amplitude equation, exhibiting a sharp selection mechanism in

the propagation velocity. Wave-number selection by this dynamical mechanism is also studied.

PACS numbers: 47.25.—c

Much efrort has been devoted over the last several
years to an understanding of the existence of pattern and
wave-number selection in various nonequilibrium sys-
tems. It was recently suggested that a particular dynam-
ical mechanism' leads to the selection of a specific state
for a large class of pattern-forming systems. This mech-
anism, coined "pattern propagation, "' demonstrates both
pattern selection and the sharp selection of the velocity
of the boundary between stable and unstable states. This
process can be initiated by a local perturbation of the
stationary but unstable uniform state. The perturbation
will grow locally into a pattern, and this pattern will

spread out into the unstable state. The front which
separates the stable and unstable states will propagate
with a well-defined velocity. Moreover, it is predicted
that a unique wave number will be selected behind the
front for a fully developed pattern. This selection mech-
anism, which is an intrinsic property of the system, in-

dependent of details of initial conditions and external
perturbations, results in a unique final state.

This phenomenon has been discussed for simple
theoretical models, ' some of which are expected to be
an exact description of real systems, like Rayleigh-
Benard (R-B) convection, in the limit of e 0 and for
spatial variations on a scale larger than a wavelength.
For small e these models (and equations of motion of
real systems) can be approximated by a Ginsburg-
Landau-type equation,

rot), A =sA+ go B,A —g ~
2
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where 2 is a complex, slowly varying amplitude of the
periodic state. Full spatial and temporal variation of the
physical variables is given by a stream function of the
form @=Re[A exp(iqox)). The scales go and ro follow
from linear stability analysis. A striking fact is that Eq.
(1) results in a pattern-front propagation which occurs
at the unique velocity'

(2)

where V=2. Since this selection principle is a general
property of Eq. (1), which also precisely coincides with

the marginal-stability hypothesis for Eq. (I), ' one ex-
pects that the prediction (2) would apply to real systems.
The only experiment on propagating fronts to date has
been done on Taylor-vortex flow, and has demonstrated
the existence of a unique velocity of vortex-front propa-
gation and wave-number selection under dynamic condi-
tions. However, an important problem, that the observed
front-propagation velocity was about half the predicted
value and lies in a linearly unstable region, ' remains
unresolved.

In this Letter we present experimental measurements
of the front-propagation velocity and of the wavelength
of the rolls formed behind the front in the Rayleigh-
Benard system for the wide range of e between 4X 10
and 2.5x10 '. The exp&, riment was done on pure water
at 30.2'C (Prandtl number P =5.373). Our experimen-
tal apparatus is an improved version of the one described
elsewhere. The temperature stability of the bottom
plate during many hours and rms noise were better than
0. 1 mK. The resolution of the computer-enhanced sha-
dowgraph visualization technique was improved consid-
erably and gave us an opportunity to resolve patterns for
c & 10 . Simultaneously we were able to reach about
the same level of resolution for c in heat-transport mea-
surements.

A key point of the successful experiment was to work
at small enough e in order to get a reasonable number of
rolls behind the front before the occurrence of spontane-
ous nucleation of the rolls. Since the critical slowing
down, which defines the waiting time until spontaneous
nucleation, is inversely proportional to c, and the time of
the front propagation is inversely proportional to Je, it is

easy to estimate the value, co, for which the vortex front
advances a distance of the order of (1/m)th of the cell
length, l. One obtains

eo = (goVmnd/I )

where d is the cell height. The numerical factor, n, was
used since the nucleated pattern could be distinguished
from noise only after time r=nzoc ', where from our
experiment n =3-4. For our cell with twelve pairs of
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rolls Eq. (3) leads to so=10 (mn) . Thus we can ex-
pect to observe propagating patterns in the full cell
(m =1) without spontaneous nucleation up to s ~ 10
and for a half-full cell (m =2) up to e = 0.1.

Another crucial point in the experiment is the special
design of the cell which is used to avoid the inducing of
long rolls, parallel to the long side of the cell, and the
pinning of the rolls by the lateral walls during propaga-
tion. Cell dimensions and their cross sections are
presented in the inset of Fig. 1. The length of the cell, I,
is 75 mm, so that its aspect ratio is about 27.3. In spite
of this we observed a stable steady state corresponding to
twelve roll pairs which remained stable up to, at least,
a=0.2. In order to heat from the side, a 0.1-mm resis-
tance wire was glued inside one of the cell's short sides.
Thin fins along the long sides of the cell provide almost
free boundary conditions. As a result of these boundary
conditions the possible induction of long rolls during
propagation was avoided, a negligibly small healing
length along the rolls was obtained, and smooth motion
of the rolls without pinning and bending was observed.

A third point crucial to the experiment's success was
to prove experimentally that a local perturbation of the
unstable conductive state does not produce patterns in

the interior of the cell, and thus does not change the na-
ture of the initial state. By side heating, on the one
hand, we produce an imperfection. On the other hand,
this imperfection should be small enough in order to be
indistinguishable from noise in the range of e where we

performed the experiment. A sensitive test of the degree
of imperfection is the "rounding" of the transition to a
convective state observed in heat-transport measurement.
Figure 1 shows the dependence of the Nusselt number N
(i.e. , ratio of the eflective heat transport through a fluid
layer to that due to the thermal conduction alone) versus
the temperature diA'erence, h, T, across the layer without
and with side heating (q, /q, 0.014, where q, and q, are
the lateral and critical heat flux, respectively). The
rounding due to side heating does not exceed 0.1%
(without side heating it is less than 0.03%). It is possible
to conclude from both plots in Fig. 1 that side heating
does not change the final state beyond the insignificant
rounding, which still does not exceed values reached in
the best experiments on convection.

Special care was taken to avoid a geometrical imper-
fection in the cell. This, probably, was the most severe
limitation to performing the experiment at small
Indeed, naively even a 1-pm variation in the cell height
results in an e variation on the order of 10 . By using
interferometric methods we adjusted the geometrical
variation in the height to the level of about 1 pm.

The experiment was performed by our simultaneously
increasing the heat flux from an initial state at e; &0
(typical value of ~; = —0.015) to a supercritical value,
and switching on the side heater (typically to a value of
q, /q, =0.014). Following the sudden increase in heat
flux, the temperature diA'erence across the cell jumped
from s; (0 to s~ & 0 almost instantaneously (much less
than our typical sampling time) and the vortex front in-
duced near the side-heated wall started to propagate into
the unstable conductive state. The induced vortex pair
at the side wall as well as the propagation of the vortex
front into the unstable state at c~ & 0 are clearly shown
in Fig. 2. A contour plot of successive light-intensity
profiles across the cell with a time difI'erence between
successive lines of about 25 sec is presented (every third
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FIG. 1. Convective contribution, N —1, to heat transport as
a function of the temperature diN'erence across the cell with
(open circles) and without (solid circles) side heating. Upper
inset: Square of light intensity amplitude vs N —

1 with and
without side heating. Lower inset: Cross section and dimen-
sions of the cell.

10
X (6) 20

FIG. 2. Contour plot of the light intensity profiles as a func-
tion of position along the length of the cell, at time intervals of
0.42t, Time increases upward.
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FIG. 3. The superposition of six successive front profiles.
Each profile was obtained after the front traveled a distance of
X along the cell. Inset: Relative positions between the six
profiles as a function of their time diAerences. The solid line is

the theoretically predicted velocity.

line is shown). Each profile on the contour plot is a re-
sult of averaging in space (of 10% of the cell) and in

time (of 100 pictures). We measured the vortex-front
propagation velocity by fitting the front with itself at
various time intervals. Figure 3 shows an example of the
superposition of the rolls defining the front taken at six
different time intervals. The front's velocity was then
determined by our dividing the shift in their position
along the cell, hx, by the corresponding time interval, At.

The inset in Fig. 3 shows the various values of hx vs At

(fifteen in all) determined by the six profiles shown. The
data are consistent with the constant velocity predicted
from Eq. (2).

The resolution of the method for front-propagation-
velocity evaluation is limited by the resolution in the dis-
tance measurement and by the resolution of the sampling
time, ht, in the experiment relative to the characteristic
time of front propagation. It is easy to show that the
latter uncertainty, due to finite sampling frequency, is
dominant and is given by 6t= g'oro ' Jed t/t„„where
r, =d ,/K is the vertical diA'usion time, and rc is the
thermal diffusivity (x =1.43 X 10 cm sec '). In our
experiment At was varied from about 20 sec for small c
to about 4 sec for large e. We then get an uncertainty in
the propagation velocity of up to 15% (we used as esti-
mates' go=0. 148 and ro '=6.90 at P=5.373). This
uncertainty was reduced drastically by our fitting many
pairs of front profiles in the same run. Typically we had
about 100 successive light-intensity profiles in a run be-
fore spontaneous nucleation occurred. Theoretically this
provided about 1000 data points for velocity evaluation
at each e, but practically it was enough to take up to 70
data points.

Theoretical predictions for the front propagation ve-
locity were confirmed by our data in a wide range of c
between 4&10 and 2.5X10 ', as shown in Fig. 4. ''
The line drawn through the data is the theoretical pre-
diction. The inset in Fig. 4 shows the same data on a

0.04

2.4—

0.08—

0.06—

1 0 — o o o

c=2.2 x 10

0 9 I ~
1 3 5

2bup/X(12)

) /X(12j
o o

2h, d/) (12j
0 07'

1

0.03
Vortex Pair Number

QJ
tj)

E
0.0/—

0.02

0.01

0.02—

20
I

2. '1 2. 2

1L

il

1

1

~1 Xp

X('2j'2 3

10' 10 10

FIG. 4. Vortex-front velocity as a function of e. The solid
line is theoretically predicted by Eq. (2). Inset: The same
data presented on a high-resolution plot.

FIG. 5. Selected wavelength as a function of c. The solid
line is the best fit to the data. The dashed line shows the locus
of maximum growth rate (Dominguez-Lerma, Ahlers, and
Cannel, Ref. 14) (the second dashed line is shifted to ko). the
dash-dotted line corresponds to the steady-state value of X with
twelve roll pairs. Inset: Structure of the periodic state behind
the front.
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high-resolution plot. From both representations it is

clear that the last two points at higher e already show a
slight deviation from the rest of the data. The average
value for V is V=2.01 with a standard deviation of
0.02. '

Finally we address the problem of the selection of the
wavelength, X of the rolls by the front propagation mech-
anism. To determine X we neglected the first two or
three roll pairs near the wall and measured the widths of
Upflow h p and downflow, hd, regions which correspond
to the distances between successive nodes in the light-
intensity profiles. The inset in Fig. 5 shows the results of
the measurements for one particular run. It is clearly
seen that A„~ is (by mass conservation) larger than Ad al-
though the local wavelength is practically constant. This
eftect lessens as we approach steady state. A similar
efI'ect, where, in contrast, h p hd increased away from
the front, was observed in a numerical calculation of the
Navier-Stokes equations for Taylor-vortex flow. ' Such a
complicated spatial-pattern evolution behind the propa-
gating front lies beyond the scope of the amplitude equa-
tion (1). Results of our measurements of the averaged
local wavelength of the vortices behind the front as a
function of c are presented in Fig. 5.

At the smallest e the wavelength, k*, selected by the
front is close to that obtained in a steady state. As ~ in-
creases, X* decreases. We can fit our data within experi-
mental error by a function X*/Xo =1 —b Je, where
ko =2.29 and 6 =0. 1 8. This dependence is surprisingly
close to that obtained from marginal-stability analysis
and numerical studies of the Swift-Hohenberg model, '
i.e. , A, */X, =1 —0.16Je.
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