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The relaxation time for scattering of vibrational modes by structural irregularities in d-dimensional
random systems is shown to cross over from 1/r co—+'co, for pkonons (co & co„ the crossover frequen-
cy between phonon and fracton vibrational excitations) to I/r —co' 'd for fractons (d is the fracton
dimensionality). The loffe-Regel criterion for localization, coz 1,—and a scaling Ansatz, then lead to the
Alexander-Orbach value, d = —', , and 1/r —co for all co & co,
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Many random systems (e.g. , percolation clusters, poly-
rners, rubbers, gels) behave like homogeneous materials
for length scales L, large compared with some "correla-
tion length" g, and exhibit fractal geometry for L & g.
Much recent interest has concentrated on the dynamics
on such systems, ' which is known to be anomalous for
L & g. Particularly, the elastic properties are described
by phonons for long wavelengths, X » g, and by localized
vibrational states, called fractons, for k « g. The
dispersion relation crosses over from Xzh =c/co —g /co

—e/2

for the wavelength of phonons with frequency co (c is the
velocity of sound), to kt, —co It + 1 for the characteris-
tic "localization length" of fractons. The exponent 49

characterizes the spatial decay of the classical diffusion
coefficient, and the scaling properties of the conductivi-
ty or the elastic constants (for scalar coupling). The
length Xf, is believed to be the only length scale describ-
ing fracton states. ' '

The above crossover occurs at a frequency co,
I, at which the density of vibrational states on

a single cluster also crosses over from N„h(co) —co"
xco, to Nt, (co) —co" ', with the "fracton dimen-
sionality" d =2D/(2+0), where D is the fractal dimen-
sionality (mass —I. for L & (). Similar crossover phe-
nomena are expected for spin waves in isotropic magnets
and in other linear problems.

Alexander and Orbach noted that d was approxi-
mately —', for percolating networks in all dimensions
d, d ~ 2, and suggested that d =

3 may be an exact re-
lation. Although this Alexander-Orbach conjecture ap-
pears to break down' very weakly in d =6 —s, d = —',
&& [1 —(e/126) +0 (e ) l, it remains controversial at
d =2."' For other systems, e.g. , lattice animals, the
conjecture is known to break down slightly. ' Published
attempts to derive d from the geometry of "growth" sites
remain inconclusive. ' '

In the present Letter we consider some aspects of

Assuming scaling, and that the modes in the fracton re-
girne are characterized by the frequency co and the
unique length kt, (co), Eq. (1) implies the scaling form

1/r = cof (co/cotR). (3)

This identifies co1R with the crossover frequency to the
fracton regime, co, . The assumption that the fracton
states have an Ioffe-Regel-Mott character then implies
that f (x) const for x »1, and that Eq. (2) holds for
all m)) co, .

Under these conditions, k~h(co) =c/co and the scatter-
ing length, ci, coincide at coiR=m, . They are also equal
to the Thouless localization length AT at this frequency
[AT = [N(co)D(co)] ' [, defined from the quan-
tum diffusion constant D(co) = c r at cotR. ~'

This is clearly a crossover condition. At higher fre-
quencies, the scattering becomes strong, and the weak
scattering description by Rayleigh scattering, Eq. (1),
and by a diffusion constant, D (co), becomes inadequate.
Nevertheless, one would expect the single length scale
(loffe-Regel-Mott) character of the eigenfunctions to
hold also at higher frequencies. The fracton model
achieves this by giving the short-length-scale multiple

quantum diffusion in the fracton regime. We study the
scattering of vibrational modes by structural Inhomo-
geneities (e.g. , local fluctuations in the atomic mass dis-
tribution or in the elastic constants). In the phonon re-
gime, this is dominated by Rayleigh scattering' ' which
yields a relaxation time r(co) given by

1/r —co2Nph(co) —cod+'co, d. (1)
In this equation, co, is the same crossover frequency into
the fracton regime, as defined above. In the following,
we shall identify another crossover frequency, co&R, above
which we expect the Ioffe-Regel ' ' behavior,

cor(co) —l.
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scattering correlations a geometric fractal description.
So far, we have described the results of scaling with

the assumption of a single crossover frequency; that is,
co, =co~R. As we show below, a consistent direct calcula-
tion of i in the fracton regime yields,

I/z~ ~5 —3d

This result is consistent with scaling and with the Ioffe-
Regal criterion [Eq. (2)] only if the Alexander Orba-ch

conjecture holds, i.e. , if there exists a quantum fracton
dimensionality dq 3 If d dq 3 then our result
can be summarized in Fig. 1. The width (1/z) of the
imaginary part of the response function should obey Eq.
(1) for ro & ro„and Eq. (2) for ro & ro, . This prediction
seems to be qualitatively consistent with recent neutron
scattering results on the dilute isotropic antiferromag-
net Mno 5Zn05F2.

The breakdown of the phonon behavior at the Ioffe-
Regel point is also confirmed by an analysis of the
thermal conductivity of a number of glasses and other
amorphous materials, extracting the phonon mean free
path using the kinetic heat conduction formula. These
authors state, "The data . . ~ therefore do not support
the suggestion that bulk glasses are fractal. In our
opinion, the dynamics of bulk glasses are better de-
scribed in terms of phonon localization due to strong
scattering from static density fluctuations. " But we have
just seen that strong scattering leads to the Ioffe-Regel
condition, and that, together with scaling, this leads
directly to a fracton interpretation with d = —', . The fact
that the material may not exhibit a fractal static struc-
ture is irrelevant. The overall mass distribution may not
be fractal (as it is not for a percolating network), but the
atomic network which contributes to the elasticity may
be. That is, the dynamics are controlled by d, while the
total mass distribution may appear Euclidean (D =d).

FIG. l. Schematic plot of I/z, crossing over from Rayleigh
scattering [Eq. (I) in the text] for to & ro, to Ioffe-Regel be-
havior [Eq. (2) in the text] for cu & co, .

The more remarkable conclusion of our calculation is
that the !offe-Regel condition leads directly to d =

3

This should be true, therefore, for all the materials ana-
lyzed by Graebner and co-workers.

Values of d& 3 always imply an additional "Ioffe-
Regel" frequency for fractons, co&R. By writing

1/z = ro(ro/rot'tt) (4')

it is seen that dW —, , Eq. (4') contradicts the uncertainty
principle (I/z greater than ro) either at low frequencies
(d & —', , co & rotR), or at high frequencies (d & —', ,

co & rotR). In these regions, the scattering becomes
strong even on the fractal, and (in complete analogy to
the breakdown of the Rayleigh law above cotR) the
scattering description becomes meaningless. All the ob-
served ' ' values for d obey d ~ —', . For systems with

d & 3, we expect a new crossover in the quantum-
scattering- dominated regime (short length scale) to
d =

3 . This crossover probably arises because of the
rearrangement of the energy spectrum as a result of the
strong scattering.

The way to derive Eq. (I) consists of a d-dimensional
generalization of the Born approximation used originally
by Rayleigh. ' Alternatively, we take as an assumption
the use of the golden rule of time-dependent perturbation
theory, from which,

I/z(~) —
I

V
I

'N (~), (5)
where N(ro) is the density of states and V represents a
matrix element for the transition out of the initial state
into a state with the same frequency co. For a distribu-
tion of coupling constants, the perturbation Hamiltonian
is —,

'
g&, &6K;J(p; —p/), where p; is the displacement of

atom i. With use of the normal mode expansion, the am-
plitude of each normal mode scales as m

' . Usually

p;
—

p~ scales like the strain Vp; and is proportional to
P/X~h~co' . Thus,

I
V

I
~co (I hK I ) where the fluc-

tuations in K have to be evaluated on a length scale on
which they are statistically independent. Because there
are (fractal) connectivity correlations up to scale
(

I
AK

I
) will in general be proportional to a power of g.

With the normalization we have chosen for the density of
states [N (ro) = ro" 'co, l, one finds (

I
hK

I
) ~ g

~co, which generates Eq. (1) (for rotR=co, ).
Our derivation of Eq. (4) starts from noting that the

equations of motion for the vibrational modes on the
fractal network are exactly the same as Kirchhoff's
equations for a resistor network. If one maps the
region between two sites on the fractal onto an effective
quasi one-dimensional "link, " then the effective length of
such a "link" is proportional to the resistance between
the two end points. This can be generalized to the
envelope of a fraction wave function with a spatial decay
proportional to exp[ —R (x )]. Here, R (x ) —x~ is the
resistance between points at a Euclidean distance x from
each other. The exponent g is given by '

g =2+ 0 —D
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=(2 —d)D/d. "
We now coarse grain our fractal into units of linear

size Xr„and evaluate the matrix element V —(p; —&J)
for one such unit. Because the relevant basic length
scale is R (Xt, ), we expect the local strain, which behaved
as p/k h in the phonon regime, to scale as p/R (Xf )
—[co' R (Xt, )] ' —co 3t2& d. An alternative derivation
is based on the analogy between the strain (Vp) and the
current between the terminals of the resistor network.
For a fixed stress (or voltage difference), the strain
scales as the conductance, i.e. , as 1/R —to . Finally
then, p;

—
p —co or

~
V

~

—to Together
with Nt, (to) —co ', this proves Eq. (4).

The philosophy of this calculation is to try to describe
strong scattering in real (d-dimensional) space by (rela-
tively) weak scattering on a fractal geometry. Our cal-
culation shows that this can be combined consistently
with the Ioffe-Regel criterion only when d = —, . We em-

phasize that the "weak scattering" result on a fractal
[Eq. (4)] is very different from what one would get from
Rayleigh scattering [Eq. (1)] in d dimensions (1/r
—to +'): The two results only agree when d =1.

As already noted, Eq. (4) reproduces the Ioffe-Regel
criterion [Eq. (2)] consistently only for d = —, . When
d & —', , one can no longer continue to identify the phonon
Ioffe-Regel frequency totR with to, . Equation (1) must
be changed to

1/r = to(to/totR) .

The phonon and fracton lifetimes are equal at co, .
Equating Eqs. (1') and (4'), one finds

d —4+3d ( )d/( fr )4 —3d

for the relationship between the crossover frequency m,
and the phonon Ioffe-Regel frequency co~R. In the more
common case, d & —', , one then requires m, & co~R & co~~.

One crosses over from Eq. (1') to Eq. (4') at to„but
now ro, r(to, ) ) l. Equation (2) is reached only at the
higher frequency co~R. Above this frequency, we would

predict a "quantum" strong scattering regime on the
fractal in which d is renormalized to dq =

3 .
This discussion assumes that the phonon Ioffe-Regel

frequency, co~R, is sufficiently low compared to the De-
bye frequency ( equivalently, that XtR is large on an
atomic scale). This is apparently always the case for
phonons in amorphous materials (see Ref. 24 for recent
results). We note that in theoretical discussions (e.g. ,

Ref. 21) it is common to choose XtR as the elementary
length scale. The strong-scattering regime then disap-
pears from the theory.

In conclusion, we have demonstrated that the
Alexander-Orbach conjecture d =

3 has a very strong
connection with the very general Ioffe-Regel criterion for
localization of the fractons, and demonstrated difficulties
arising from other values of d. While this is not a
rigorous proof, it certainly suggests that a scaling

description of the strong scattering regime in disordered
materials requires the Alexander-Orbach percolation
value d = —', . We believe this makes it plausible that the
high-frequency modes in disordered materials will

display this type of behavior irrespective of their detailed
microscopic structure.
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