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Perturbative Stability of Smooth Strings
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Polyakov's theory of surfaces embedded in Euclidean space-time with an extrinsic curvature term is
stable under small fluctuations only if the number of dimensions is positive and less than 26.

PACS numbers: 11.17.+y, 68. 10.Cr

Polyakov has proposed a theory of surfaces in which
the action depends not only upon the area of the surface,
but also on the way in which the surface is embedded in

space-time, through its extrinsic curvature. ' This
theory serves as a model for flux sheets in QCD, particu-
larly if it is possible to reach a phase in which surfaces
are not "creased" over large distances, as they are in the
Nambu model, but smooth. " This theory had arisen
previously in the study of interfaces by Helfrich and
others. "

The Nambu string can be written in a way which ex-
hibits a local conformal symmetry; in the quantum
theory, this symmetry is only manifest in 26 dimen-
sions. Smooth surfaces do not appear to possess any
such conformal symmetry, so presumably they are con-

sistent theories in a wide range of dimensions. In this
work I compute in which dimensions smooth surfaces are
stable under small fluctuations.

A better understanding of the role played by the Liou-
ville theory in this model is gained along the way.
Forster, Polyakov, ' and David suggested that the
Liouville action arises in the quantization of smooth sur-
faces. The Liouville term is proportional to 26 —d,
which led David to conjecture that smooth surfaces are
unstable in more than 26 dimensions. I show this is true,
but find that the Liouville term does not show up where
expected. Instead of being most important over large
distances, ' it dominates only at short distances.

In conformal gauge, where the metric g, b =p6,~, the
action for smooth surfaces is

S= Jtd zp
1
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The surface is described by x =x(z'), where x is a vector in d Euclidean dimensions; the z', a =1,2, are the coordi-
nates of the world sheet.

The first term in Eq. (1) is the square of the extrinsic curvature for the surface, with a a dimensionless coupling con-
stant. In the second term, X' is a constraint field which fixes the metric to be that intrinsic to the surface. The third is
the Nambu term, with a string tension equal to p. Lastly, the contribution of the Fadeev-Popov ghosts for general
coordinate invariance is represented by Ssh„,(p).

Suppose that one sets p= 1 in Eq. (1) and drops the integration over p in the functional integral. This truncated
theory is a sum not over all surfaces, but only flat ones. (By flat, I mean that the intrinsic curvature vanishes. As
shown by the example of a cylinder, there are many surfaces that are curved extrinsically but not intrinsically. ) I have
studied this model of flat surfaces before, ' and these calculations are of help here.

The x's appear quadratically in the action, so they can be integrated out to give

S,tr(p, k' ) = —trln t) r) ——t),k' r)g +„~ d z pp — pX' 6,g +Ssh„,(p).
p p 0

S.~ =pp&
—

1 dko+ p + Xo[I —ln(ko) l
8z

(3)

where 8 is the area of the surface. The renormalized

The integration is with respect to the invariant measure
on the world sheet, Jd z p.

I expand about the simplest possible background —an
infinite, flat surface. Thus I assume that p =pp and
X' = —ikp6', where pp and Xp are constants. To deter-
mine these constants it is necessary to calculate S,lT un-
der this Ansatz. The result is

coupling is a„, a„=a —(d/4z)ln(A)+. . . , where
A is a momentum cutoA. This relationship between u,
and a implies that the theory is asymptotically
free. '

For the action to be stationary under variations of pp
and Xo, Xo = —8~p/d =exp( —8gr/a, d); the bare string
tension p must be negative so that Xp & 0. The value of
pp is not fixed, and can be taken as an arbitrary positive
number. At the stationary point, S,~=O, so the renor-
malized string tension vanishes.

These results are similar to those found in the study of
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smooth surfaces in a large number of dimensions. At
large d, the corrections to S,ff are of order 1/d and so
small. I work in an arbitrary number of dimensions,
where this represents merely one of many possible solu-
tions to the equations of motion.

What, then, is the value of analyzing stability about
this special solution? Because the theory is asymptoti-
cally free, perturbation theory is valid at large momenta.
But large momenta corresponds to small distances, and
at short distances any (regular) surface is essentially flat.
Thus I establish a necessary condition for stability.

Define

p=po[I+(8x/i d i ) ' (p/m)],

&' = (m/po) [ —im6' + (8n/ i d i ) ' g' ]
(4)

where m =poko & 0. Note that while the stationary
point of k' is imaginary, the fluctuations in X' are
real. '' This is required so that integration over the k'
generates the proper 6-function constraint in the func-
tional integral.

Expanding to quadratic order in p and X,

S,ff(p, k' ) =— )"[P& '(p, p)p+2ph '(p, k)i+Ah '(k, X)k]+. . . ,

'(p, X) =6 '(k, p). The indices on X' are often dropped.
I start with the diagonal term for the metric field, 5 (p, p). For this it is possible to ignore k and write

(5)

Ssh„t(p) + —tr ln
d
2

—
1 2 d9 + —tr ln

p 2 P po

2—1~2+ m =
2 „g P» (P.P)P+ (6)

The first two terms on the left-hand side are identical to
those in Polyakov's formulation of the Nambu model.
Their only dependence on p is through the conformal
anomaly, so they give the usual factor of the Liouville ac-
tion. The last is an integration over a massive mode.

Let the momentum be p': It is convenient to intro-
duce a dimensionless variable P, which is proportional to
the magnitude of the momentum, P =p /m, and the
unit vector p' along p'. Then,

'(p, p) —sgn(d )
26 —d In(P )

6d P
P —2 +.

(7)

The first term on the right-hand side is the Liouville ac-
tion to —O(p ), written in an unfamiliar way. The
second is the leading contribution of the massive mode at
large momentum. In Eq. (7) and henceforth, I write
only the dominant terms at large P; corrections are at
most —1/ln(P) times the terms written.

Forster, Polyakov, ' and David proposed that the
Liouville term appears in the quantum theory of smooth
surfaces. They argued that since the Nambu term has
fewer derivatives than the extrinsic curvature term, and
as the Liouville theory arises from the quantization of
the Nambu term, that the Liouville term should be most

i
significan about zero momentum.

In contrast, Eq. (7) shows that the Liouville term
dominates A '(p, p) at large momentum. Because the
contribution of the massive mode is so much smaller
than that of the Liouville term at large P, presumably
when d~26 the Liouville term dominates A '(p, p) at
large P to all orders in perturbation theory. Away from
large P, however, the massive mode also contributes, and
there is no reason why it cannot be as important as the
Liou ville term.

For example, consider the theory about d =~. (The
model is unstable in this limit, but it serves to make a
point. ) For large d, Eq. (6) can be used to compute

'(p, p) around zero momentum. Though the Liou-
ville term contributes —

—,
' P, as P 0 the massive mode

gives —1+ —,
' P+. . . , so in all 6 '(p, p) ——I

+ 0 (P ): The Liouville term does not dominate at
small momentum. This result, which supersedes that of
Ref. 2, is discussed at the end of the paper.

The other terms in 5 ' can be found in a straightfor-
ward manner by expanding perturbatively in p and k' .
At large P the oft-diagonal elements are

'(p, k' ) ——i sgn(d) [(8' /2)ln(P) +p'p ]. (8)

'(X, X) can be read oF directly from the results for
flat surfaces,

' (X,k ) —sgn (d ) [(K ' + K )/4P + 1n (P )K /4P —K /2 P + 2K /P ]

The K's are matrices which span the space of two symmetric tensors, and are defined in Eq. (4.8) of Ref. 10. The
momentum dependence of A '(k, X) follows from Eq. (4.15) of Ref. 10.

The theory is perturbatively stable if every eigenvalue of 3, ' has a real part that is positive. These four eigenvalues
can be determined with a little eAort.

One eigenvalue of 6 is -sgn(d)ln(P)/2P For this eigenvalue . to be positive so must the number of dimensions.
Hence I assume that d & 0.
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The characteristic equation for the remaining three eigenvalues is

y
—[cP —ln (P )/P ]y + —,

'
ln (P )y —ln (P )/4P =0, (10)

y ——,
' P ln(P),

y —~ (i/J2) ln(P) —(3/4P) ln(P).
(12)

There are corrections to the complex conjugate eigenval-
ues that are of order 1, etc. , but these are all purely

imaginary. The leading real part of these eigenvalues is
given in Eq. (12), and as it is negative the theory is not
stable in 26 dimensions.

There is an easy way to understand these results. At
least over short distances, smooth surfaces can be viewed
as an amalgam of the Liouville theory (which results
from integrating over the metric field) and the model of
flat surfaces (as that contains the dynamics of the con-
straint field). The Liouville theory which arises is pro-
portional to 26 —d, so smooth surfaces are unstable in

more than 26 dimensions. On the other hand, flat sur-
faces are stable only if the number of dimensions is posi-
tive, ' so this should hold for smooth surfaces as well. In
26 dimensions the Liouville theory vanishes, and detailed
calculation is needed to show instability.

That smooth surfaces are only stable for 0 & d & 26 is
in one sense rather remarkable. For smooth surfaces, x
is a vector, and so it is natural to expect that it should be
possible to develop some sort of consistent solution at
large d. ' This would allow the theory to be studied not
just at large but over all momenta. For the Liouville
theory of the Nambu string, the correct large-d limit is
about minus infinity. ' For flat surfaces, the correct
large-d limit is about plus infinity. ' If Nature were
kind, she would allow smooth surfaces to have a stable
solution about either plus or minus infinity; instead, nei-
ther is allowed.

The nature of the unstable solution about infinite d
can be studied by the rotation of the contours of integra-
tion for p and X. As mentioned following Eq. (7), in this
limit 6 '(p, p) does not vanish about zero momentum.
Further calculation shows that this is (usually) true for

where y represents the eigenvalue, and the constant c
= (26 —d)/6d. In Eq. (10) I have dropped any terms
which are small at large P. The only exception is that
for y, since when d =26, c =0, and the term —ln(P)/P
is dominant.

When the number of dimensions is not equal to 26, the
solutions to Eq. (10) are given by

y -cP, y -ln (P)/2cP, y —ln(P)/2P

When d is less than 26 (c ) 0), all eigenvalues are real
and positive and the theory is stable. The theory is un-
stable when d is greater than 26 (c ( 0), with two posi-
tive and two negative eigenvalues.

26 dimensions is a special case. There is one positive
eigenvalue, and a pair of complex conjugate eigenvalues,

all components of the inverse propagator 6 ', as well as
for those of the propagator 5 computed from h,

This is unlike the Nambu model. There, the interac-
tions of the metric field p are given by the Liouville
theory. In perturbation theory, which can be used for
d = —~, the two-point function of p has logarithmic
correlations over large distances. '

Let me make the dangerous assumption that qualita-
tive properties of smooth surfaces for 0 & d & 26 can be
gleaned from the solution at infinite d. It is certainly
natural to expect that correlations between the X' 's are
exponentially damped over large distances. ' The
solution at d=~ indicates that for smooth surfaces, in-

teractions due to the extrinsic curvature term mix up the

p and X'" fields together, so that in the end, neither have
long-ranged correlations.

Not too much should be made of these diA'erences.
What is most important is the two-point function of the
x's, since this measures the mean square size of the sur-
face. For smooth surfaces about d = + ~, generally this
size increases logarithmically with the area of the sur-
face, as it does for Nambu strings around d = —~. '

Nevertheless, that the model is more complicated in

the infrared than first thought might indicate that
Polyakov's goal —of reaching a phase in which surfaces
are smooth instead of creased over large distances '

—could be easier than first thought.
The solution about d =+ ~ will be presented in a

separate publication, along with details of the present
study.
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