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Properties of Random Superpositions of Plane Waves
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Random superpositions of plane waves, designed to mimic the local behavior of completely random
eigenfunctions of classically chaotic Hamiltonian systems, are shown to have surprising properties, in-
cluding structures which may be precursors of periodic orbit scar localization.
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The nature of the quantum eigenstates of classically
chaotic Hamiltonian systems is the subject of much
current research. ' Some of the reasons for the keen in-
terest are (I ) a desire to understand the quantum mani-
festations of the classical nonlinear dynamics and chaos
which has been the object of so much work and progress
in the last decade, (2) a desire to extend the well

developed semiclassical methods of quasiperiodic dynam-
ics into the chaotic domain, and (3) a need to extend the
considerable body of results on the quantum eigenvalue
spectra of classically chaotic systems to the eigenfunc-
tions, which contain more information than the eigen-
values.

For quasiperiodic classical dynamics, the semiclassical
eigenfunctions can be written

I'E(x) =g„a„~(x)exp[iS„(x)/l'i+i(tt„],

where S„(x) is the classical action, p„ is a phase correc-
tion which depends on the caustics that the orbit touches
(the Maslov phase), and a„~(x) is a real amplitude.
The quasiperiodic classical trajectory may arrive at the
position x in several distinct ways, distinguished by dis-
tinct momenta p„=VS„(x) (but p =

~ p„~ =6k is fixed

by the local kinetic energy and is independent of n) and
distinct classical probability

~
a„~(x)

~
=detklp„/BJ],

where J are the classical action variables. Equation (I)
is a sum over these distinct ways of reaching x, and is

simply the familiar statement, common to so many wave
equations, that in the short-wavelength limit the "rays"
are the gradients of the associated wave fronts. In the
short-wavelength (high energy, small h ) limit, we may
locally take the waves to be plane waves with a wave-
length determined (in the Schrodinger case) by the local
kinetic energy, or (in the optics case) by the local refrac-
tive index.

Quasiperiodic motion implies that the sum over n in

Eq. (I) contains a finite number of terms; i.e. , a trajecto-

C(x, x+ b) = J 'P (x)e"'"'(x+b) d x

=const& Jo(k6), (3)

where Jo is the Bessel function of zero order and where k
and 6 are the magnitudes of k„and 8'.

It seems desirable to know what a random eigenfunc-
tion actually looks like. Although technically the char-
acterization of (x

~
0 "" ) as "Gaussian random with

Bessel-function spatial correlation" is a fairly complete
statement about the ideally random eigenfunction, it
does not give us a good idea of the appearance of such a
function. In the literature, comparisons of (x

~

+"" )
with Gaussian random speckle patterns (as in scattered
laser light) have been made. These analogies are not

ry or ray accesses a given point x heading in finitely
many directions. A familiar case from classical mechan-
ics is the Lissajous motion associated with two separable
oscillators of incommensurate frequencies.

Chaotic ray motion implies that each point x is ac-
cessed by infinitely many distinct rays, and that ray
directions are random. There is no clean theory leading
to a direct extension of Eq. (I) to the classically chaotic
case, but Berry conjectured that Eq. (1) still applies, at
least qualitatively, with the added reasonable assumption
that each time a ray returns to a given region, its history
since the last visit generates a random phase. That is,
S„(x) is not in phase with S„~l(x), etc. Locally, the
eigenfunction is a superposition of an unlimited number
of plane waves of fixed wave-vector magnitude but ran-
dom amplitude, phase, and direction:

e"" (x) =g„a„exp(ik„x),
where a„ includes a random phase factor. By the central
limit theorem, +"" (x) is then Gaussian random. Berry
showed that it has the coordinate-space correlation func-
tion (for the two-dimensional case)
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completely correct, as we show here.
It is easy to generate explicitly a random superposition

of plane waves with equal wave-vector magnitudes and
to plot the result in coordinate space. Apparently, this
has not been done previously. We were led to to it by
the realization that certain unusual structures should ex-
ist in coordinate-space plots of the kind of random wave
function appropriate to semiclassical studies.

The existence of these structures can be discovered by
investigation of another correlation function, involving
two coherent states instead of two positions. Consider
first the overlap between a coherent state

I
a) and a par-

ticular random-wave superposition
I

4'"" ). We choose
the coherent state to have the same average wave-vector
magnitude as the fixed k used in the plane-wave super-
position by requiring that I p, I

= 6 k, where p, is
&a

I p I
a). In coordinate space, the coherent state

(Gaussian wave packet) reads

(x I
a)= y,~.(x)

=exp[ —A (x —x.) '/26+i p. (x —x.)/6].

It has average position x, and momentum p, . This
Gaussian is a flexible test function which balances posi-
tion uncertainty and momentum uncertainty in a known
way: dp —(AA ) 'i, hx —(6/A ) 'i . The Gaussian in-
cludes the previous spatial correlation as the limit

~, but this limit corresponds to complete uncer-
tainty of the magnitude and direction of the momentum.

The statistics of the amplitude &a
I

+"") is Gaussian
random if we examine a large number of positions
x, =&a!x!a) and directions p, of the coherent state.
Suppose that by chance we had picked an I a) with a
very large overlap with

I

+"'" ). Now, we evolve this
coherent state for a short time by use of the free-particle
propagator. It moves in the direction of p, a distance

I p, I t/m, and spreads a little. If the picture of
(x

I

+"'" ) as being a speckle pattern were correct, then
our choice of

I
a) would correspond to our having fortui-

tously placed the wave packet on the top of one of the
spikes in the speckle pattern. Time evolution of

I
a)

would result in motion away from the spike and a rapid
decrease in the packet's overlap with

I

+"" ). We find,
however, that the magnitude of the overlap must remain
unchanged,

I
&+""

I exp( —tHr/h)
I
~) I

= I&+""
I exp( —

~&r/e)
I

tt& I
='I(~""'I tt& I,

since I
+"" ) is an eigenstate of our Hamiltonian, by

construction. Thus, at the position x, +p, t/m, a
coherent state with the same momentum also has anom-
alously large overlap with I

+"" ). If we move far
enough away, however, spreading of the wave packet
(the evolving coherent state) in the time necessary to get
there will be significant enough to degrade the argument.
This reasoning suggests that the regions of large ampli-

! tude of (x
I

+"" ) occur in short segments, rather than as
isolated spikes. Since the momentum is aimed along the
axis of these segments, the associated nodal lines will run
perpendicular to them. The special feature which causes
this eA'ect, and which is not present in the usual speckle
phenomenon, is the use of a fixed wave-vector magni-
tude in the plane waves composing

I

+"'" ).
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FIG l. (a) ( ontour map of (x I
+""d& over a region 60 wavelengths on a side. The function

I

e""'& is a superposition of 400
cosine waves, each with a random orientation k, a random phase shift, and a Gaussian random amplitude. (b) Another view at the
same scale, this time of 1(x I

+""~&
I

~. 10000 cosine waves were used. (c) A speckle pattern, obtained by superposition of 1000
cosines with various wave-vector magnitudes.
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If mixed magnitudes are used, the replacement of
(0"'"

I exp( —iHt/h) by (+""
I exp( —iFt/h) is no

longer correct and the argument leading to the sugges-
tion of segments no longer applies. However, semiclassi-
cal considerations force us to use fixed magnitude at
each x.

The random pattern of ridges is obvious in Fig. 1(a),
which shows a contour plot of (x

I

+"") over a region 60
wavelengths on a side. The function

I

+"" ) is a super-
position of 400 cosine waves, each with a random direc-
tion, a random phase shift, and a Gaussian random am-
plitude. Figure 1(b) shows another such state, this time
built out of 10000 cosine waves; and the plot is of

I (x
I

@"") I . On this scale, many of the segments seem
curved. This is explained by more detailed consideration
of the correlation functions, which is done next. Care
has been taken to insure that these states are truly
"Gaussian random with Bessel-function spatial correla-
tion. " The robustness of these structures has also been
checked by use of various numbers of cosine waves, vari-
ous random-number generators, and a smooth, even dis-
tribution of orientations for the wave vectors for the
cosine waves (but still with a random phase attached!).
The resulting states always display this ridge network.
Finally, we show for comparison a typical speckle pat-
tern, where a range of wave-vector magnitudes is used,
Fig. 1(c). The differences between Fig. 1(c) and Figs.
1(a) and 1(b) are fairly strong.

We now proceed to quantify the eAects seen in the
coordinate-space plots, Figs. 1(a) and 1(b), and dis-
cussed qualitatively above. First, we clean up a dusty

C(a, p) =((P, —P)(PI —P)), (4)

where P~= l(ale"" ) I
' P=(l(ale"" ) I'&

=(
I (p I

+"" ) I ). We have chosen to examine the cross
correlation of probabilities rather than amplitudes be-
cause this directly probes the correlation of large overlap
of two diferent coherent states with a random cosine-
wave superposition, eliminating the "dephasing" eA'ects
which can occur when amplitudes are considered. (In
the present context we are not interested in the dephas-
ing).

Inserting the expression for
I

@"") into Eq. (4), dis-
carding terms random in phase, and replacing sums by
integrals where appropriate, we get

corner of the problem: The arguments given here and in

the literature have so far been in terms of superpositions
of complex plane waves, but for systems with time-
reversal symmetry, one can always taken the eigenfunc-
tions to be real. For every plane wave a„exp(ik„. x) we
must have another, a„*exp( —i k„x). This will affect
some of the properties of the random wave functions, but
the plots of

I

+"" (x) I
are not affected. The quasilin-

ear structures remain true for both the real and the com-
plex random superpositions.

The eigenfunction is to be modeled with random su-
perpositions of phase-shifted standing cosine waves, rath-
er than traveling plane waves. If we abbreviate the plane
wave with wave-vector magnitude k traveling at an angle
0 with respect to the x-axis as

I 0), the cosine waves take
on the form

I

@"'") =g~ [a~ I Ol)+a~*
I 0, +tr)]. The

correlation function we choose to investigate is

C(a, p) =
J dO„dO'(a

I 0)(OI p)(p I
0')(O'I a)+ J dOJ dO'(a

I
0&(0'I p&(p I

0+tr&(0'+tr
I

a& (5)

Examine a piece of this equation, namely c, p= fdO(a I 0)(OI p). This integral is related to Bessel functions J„(x).
These may be written

ll
p

21C

J„(x)= J exp [ix cos(0+ 0') +in (0+ 0') ]dO,
2z

where we have added a phase 0' to the integrand. The integral is, however, independent of 0', even for complex 0'; we
arrive at

c =e "" Jo(k(z z) 't )
where

z =x.—xp
—i(p. +pp)/A.

The parameter 2 is the Gaussian spread parameter. After a little more algebra we obtain

C(a, P) =exp( —4Ak /2) [I Jo(k(z z) ' ) I
+

I
Jo(k(z'. z') ' ) I j,

(6a)

(6b)

where z is as before and z'=x, —
xp

—i(p, —pp)/A.
In the limit A ~, the Gaussians become coordinate-space delta functions, and the correlation function C(a, p)

reduces to =
I Jo(k8) I, where 6'=

I x, —
x& I, in agreement with the previous coordinate-space results.

In Fig. 2(a), we plot C(a, P) for k =2tr, A =1, as a function of x and y, for the geometry shown in Fig. 2(b). The
tendency for the overlap to be large in the direction of motion (x in this case) is evident. The manifestation of this in
coordinate-space plots of

I

+"'" ) is the ridgelike structures seen in Fig. 1(a).
The arclike structures seen in Fig. 1(b), which surround regions of low amplitude, can be understood as follows. Im-

agine placing a Gaussian coherent state
I a) in one of these low-amplitude regions, with some direction k. The magni-
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and 1(b), but previously one of us' and McDonald have
noted a strong correlation between similar structures and
unstable periodic orbits in classically chaotic Hamiltoni-
an systems. In the case of the stadium enclosure, the
structures are rather striking, ' and bear direct cor-
respondence to some simple and some moderately com-
plex unstable periodic orbits. Locally, these structures,
which were dubbed "scars,"' bear a strong resemblance
to the quasilinear segments seen in Fig. 1(a). Instead of
forming a random network as in Fig. 1(a), they form
around certain classes of periodic orbits. A theory for
the scars was given, showing which periodic orbits were
likely to be the loci of scars. What is needed is a more
complete theory which shows how the scars arise out of
the random network of Fig. 1(a).

FIG. 2. (a) C(a, p) for k =2tt, A =1, as a function of x and

y, for the geometry shown in (b). The axes are labeled in

wavelengths. The momenta of the two packets were chosen to
be parallel.

tude of the overlap, which is small, must remain the
same as

~
a) is propagated into the surrounding region,

which has regions of much larger amplitude

i (x
~

%'"'" ) i. Only if the nodal structure is quite
diA'erent can the magnitude remain small. The propaga-
ting packet has its nodal lines perpendicular to k, and
note that the nodes of the semicircular regions surround-

ing the low-amplitude domains are approximately radial
from the center of the domain. This contrasting nodal
structure guarantees that the overlap i(a(t) i+"" ) i

will remain small.

Finally, we speculate on the significance of the quasi-
linear structures seen in Fig. 1 and evidenced in C(a, P).
These structures are clearly disorganized in Figs. 1(a)
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