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To study properties of self-avoiding surfaces, we consider D-dimensional elastic manifolds embedded
in d-dimensional space. In the (d,D) plane there is a line separating ideal (Gaussian) and self-avoiding
(interacting) behaviors. We develop the techniques for systematic perturbation expansions, and
renormalization-group analysis, about any point on this line. The usual ¢ expansion for polymers about
d =4 is a special case. The exponents v and y are calculated to lowest order, providing very good values
for polymers (D =1), and reasonable indications for surfaces (D =2).
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One current challenge in theoretical physics is to un-
derstand the behavior of surfaces.! In particle physics
this question arises in both string and gauge theories:
World sheets of strings are two-dimensional manifolds,
while random surfaces appear in high-temperature ex-
pansions of lattice gauge theories. In condensed matter
physics, random surfaces are essential to the understand-
ing of microemulsions, and appear naturally in chal-
cogenide glasses, lipid bilayers, and sheet polymers.

In the absence of self-avoidance, essentially all models
of linear polymer chains lead to a harmonic theory at
long wavelengths?; i.e., a continuum free energy propor-
tional to fdx(dr/dx)?, where r(x) is the monomer posi-
tion at a distance x along the chain. Surfaces, on the
other hand, fall into a variety of universality classes,! de-
pending on factors such as rigidity, surface tension,
and/or local microscopic constraints. A particularly sim-
ple universality class is exemplified by ‘‘tethered sur-
faces,” composed of particles with a fixed two-
dimensional connectivity.> Here, entropic effects gen-
erate a harmonic elastic free energy F, which is a simple
generalization of the polymer one, F~ [d?x(Vr)2. It is
therefore natural to treat self-avoidance in tethered sur-
faces by use of perturbative renormalization-group (RG)
methods developed for polymers. Problems arise, howev-
er, because although self-avoiding (SA) interactions are
irrelevant for polymers in dimensionalities d > 4, allow-
ing an expansion about four dimensions,* these interac-
tions are always relevant for surfaces, making a similar
expansion impossible.

One way around this difficulty is to consider general
D-dimensional SA manifolds. The simplest continuum
energy interpolating between polymers and elastic sur-
faces is proportional to fd?x(Vr)2 Dimensional
analysis for this free energy yields [r] ~[x]1' 72’2 corre-
sponding to an ideal fractal dimension of d})
=2D/(2— D), which interpolates between 2 for random

walks and oo for random surfaces. Two such ideal mani-
folds (or two widely separated segments of the same
manifold) intersect only if embedded in a space of di-
mension d < 2df. There is thus a critical dimensionality
d*(D)=2df=4D/(2— D), separating ideal and SA be-
haviors as depicted in Fig. 1.

The critical line, of course, passes through the expan-
sion point (d* =4,D* =1) for polymers, but in fact any
point on this line is an equally good expansion candidate.
For example, we can stay in three dimensions (d =3),
and change the manifold dimensionality D. Self-
avoidance dominates for solid elastic cubes (D =3), but
is less important for elastic surfaces (D =2). It produces
relatively small corrections to the Gaussian result for
linear manifolds (D=1), and becomes negligible when

D<D*=%. An ¢ =D—$% expansion corresponds to
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FIG. 1. Scaling regimes for manifolds. SA interactions be-
came relevant at an “upper critical boundary” d* (D) and sat-
urate at the d =D “lower critical boundary” (solid lines). On-
set of relevance of three-point and oo-point interactions is indi-
cated by dashed and dotted lines, respectively. The & expan-
sions quoted in the text are indicated by arrows.
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SA polymers when ¢ =+, and SA surfaces when ¢'=
For d =2 the critical manifold dimensionality is D* =
In this paper, we generalize the RG techniques of Ref. 4
to all points along the critical line. The lowest-order re-
sults for the exponents v and y provide new, more precise
exponents for polymers (D =1), and encouraging indica-
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Z=f$r(x)exp{—gfd’)x(Vr)z—%dedex'é"”(r(x) -r(x)) ¢,

where (Vr)2=Y2_,(3r/dx,)% The first term in the ac-
tion describes the ideal elastic manifold, while the second
term is an SA repulsion on contact. Equation (1) for
D=1 is the Edwards model of polymers,>* while for
D =2 it corresponds to tethered surfaces.® Under a re-
scaling x— Ax, and r—A'r, Eq. (1) gives K— A”*K
and v— A”v with yg=2v+D—2 and y,=2D —dv.
The “ideal” fixed point corresponds to vo=1—D/2,
which leaves the elastic term invariant, with
yQ=2D—(Q2—D)d/2. In agreement with the previous
geometrical argument, we find y2 >0 and SA interac-
tions relevant for d <d*(D)=2df. An approximate
Flory argument®® in the SA regime requires the two
terms to scale the same way (yx =y,) and leads to the
exponent vy =(D+2)/(d+2) for the radius of gyration.
We expect fully stretched manifolds (v=1) when d <D
(see Fig. 1).

A prerequisite of a systematic RG study of the SA re-
gime is understanding the relevance of higher-order in-
teractions. An n-particle interaction is represented by a
term

unf ﬁdei

i=1

n—1

IT6G(x) —rx;+1))

i=1
in the free energy. At the ideal fixed point the scaling of
this interaction is governed by y2=nD—(n—1) |

ok, xp; —k,x3) = LffDr(x)?’{r(x)}exp{ik‘ [r(x;) —r(x)1,
Zy

tions of the trends for surfaces (D =2).

Model.— The manifold configurations are described
by r(x), where x is a D-dimensional vector labeling posi-
tions within the internal space of the manifold, while r is
a d-dimensional vector describing the embedding of the
particle in external space. The partition function is ob-
tained from

(1

x (2 —D)d/2, which becomes important at the Gaussian
fixed point when d <d; (D) =ndf(D)/(n—1). We ex-
pect these higher-order interactions to be irrelevant ex-
cept at special multicritical points.2 The critical curve
for three-body interactions is depicted by the dashed line
in Fig. 1, and is important to tricritical, or 8-point, be-
havior.? The accumulation point of these higher-order
lines at d% =df(D) is the dotted line in Fig. 1.

Our systematic calculations are performed for a
monodisperse solution of hyperspherical manifolds of
internal radius X with open boundaries. (These restric-
tions are for the sake of simplicity, and not essential.)
Our treatment follows the spirit, and as far as possible
the notation, of a renormalization-group treatment of
polymer solutions by des Cloizeaux.* What follows is a
brief outline of the calculation; details will appear in a
future publication.

Perturbation Theory.— The SA interaction in Eq. (1)
is treated perturbatively around the ideal manifold. The
expansion is shown diagramatically in Fig. 2, with a
dashed line depicting the bare SA interaction between
two points on the manifold. The rules for calculating
these diagrams are as follows:

(i) The role of the propagator is taken by the two-
point function [Fig. 2(a)]

(2)

where Z, is the noninteracting partition function, and ?{r(x)} is the Boltzmann weight implicit in Eq. (1). General
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FIG. 2. Perturbation “manifold diagrams” for (a) the two-point propagator, and (b) interaction renormalization.
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n-point functions for the ideal manifold are obtained from

<cxp [iZka-r(xa)]>0=exp[— > k%kﬁCD(xa—x,;)J, 3)

a<p

where Cp(x)=|x|27%/Sp(2—D) is the Coulomb in-
teraction in D dimensions (Sp is the area of a unit
hypersphere).

(ii) The terms in the expansion are calculated by writ-
ing of &9r(x)—r(x)) as [d9%/Qn)9expliq-[r(x)
—r(x)]}, and use of Eq. (3). This is followed by in-
tegration over the magnitudes and internal positions of
the charges introduced by the perturbation term. Note
that the concept of reducibility with respect to the cut-
ting of propagator lines has no meaning for general man-
ifold diagrams [e.g., in the second-order term of Fig.
2(a)l.

Regularization.— There are a number of divergences
that have to be removed from the perturbation expan-
sion. One set is related to the limit |x, —x;|/a— o (a
is the short-distance cutoff of the model), and is removed
by mass subtractions. The more important divergences
result from the relevance of v as

e=4D—(2—D)d

tends to zero, and are regularized by continuation to
noninteger values of &. (Note that, for d =3,6=7¢")
There are three important quantities whose expansions
need to be regularized at the lowest order.

(i) The most complex behavior is exhibited by the par-
tition function. It is sufficient to examine ¢ (k,x;;
—k,x;), which for k=0 reduces to [see Eq. (2)] the ra-
tio of noninteracting and interacting partition functions
(denoted by ¢;). The lowest-order correction from Fig.
2(a) is then

s , dd 2 ,
_%dedex Tz;%gexp —'qECD(X_X) .
(4)

By a change to relative and center-of-mass coordi-
nates, it can be seen that the main contribution from Eq.
(4) comes from the manifold “volume” and goes as X°.
There are additional divergences from the manifold
edges, corners, etc., which behave as X?~ ! x?~2 .
Finally, there is a contribution independent of the
center-of-mass coordinate that becomes logarithmically
divergent at € =0, and implies that the partition function
Z scales with the internal manifold size X as

Z~explfpXP+fp_ X2 '+ - - - 1xr™ L (5)

We expect fp,fp-1,... to be nonuniversal and shape
dependent, while y is universal. Numerical simulations
of surfaces have to be fitted by Eq. (5), and f, and f,
identified, before y is estimated. Analogous subtractions
of X2, XP~1, ... terms are required in a perturbative cal-
culation of y. Here D such subtractions have to be car-

l

ried out in a manner that can be continued in D. In fact
the integrals in Eq. (4) lead to a regularized partition
function ¢ =1+2A(D)(z/e), where
2D/(2—D)
_Ss

7= XE/Z,
D U

KSp(2—D)
4r

is the effective coupling constant. A (D) is the constant
term in the expansion of —[t/(1 —¢2)1? about 1 =1, ob-
tained after removal of the D leading divergences. (For
nonintegral D, A(D) can be evaluated from a power
series.)

(ii) Relative fluctuations of two points on the manifold
are obtained from the O(k?) term in ¢ (k,x; —k,x,).
This is a straightforward generalization of our previous
calculation? of the correction to size fluctuations of sur-
faces. The final result is

( Ir(xl) _l'(Xz) I 2)

2d
= 7CD (X| —Xz)

2—D |z
1+———2 [——H (6)

4

(iii) Renormalization of the interaction is studied via
the second virial coefficient, whose perturbation series in-
volves connected diagrams of two manifolds as in Fig.
2(b). Of the two O(v?) terms in Fig. 2(b), one is in-
teraction reducible, and obtained simply as the product
of v and ¢ (thus interaction reducibility is still useful for
manifolds). The other /-irreducible part involves a third
integral, and eventually leads to the regularized form

p )2

SpX
GH=—20|=2

1+4A(D)§ —2@(1))% , (D

with
7'2r(2/(2-D))
220/2=DIp((2+D)/22—D))’

eW)=

Renormalization.— Equations (5)-(7) contain all that
is necessary to calculate the scaling exponents to O(g),
since ¢ ~X""! and (|r(x))—r(x2) | D~ |x;—x,|2"
(i.e., the manifold size R scales as X*). The fixed-point
value z* is obtained by our requiring the second virial
coefficient &»/¢? to scale as RY. Generalization of the
polymer calculations of Ref. 4 then leads to the lowest-
order exponents

_2-D 2—D* .
2 8[D*+2¢(D*)]

1%
(8)

~ AD*)
= s en ©
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Note that each point in the SA regime of Fig. 1 corre-
sponds to a given g, where scaling exponents can be ob-
tained by expansion about any point (d* D*) on the
critical line.

For example, an expansion about d*=3 gives
v=vp+0.067¢ [vy=(2—D)/2] and y=1+0.122¢,
which can be used for polymers (¢'= %), and surfaces
(e'=%) in three dimensions. The polymer results
v=0.567 and y=1.122 are very good, but the surface
exponent of v=0.536 is certainly incorrect as it should
be greater than %, and the best estimate is v=0.8.3 At
present, there are no independent estimates of y, and our
result of y=1.976 is not unreasonable. Similarly for
d* =2, we have v=v7+0.075¢, and y=1+0.113g¢, lead-
ing to v=0.650 and y=1.226 for two-dimensional poly-
mers (e=2).

We have demonstrated that scaling properties of gen-
eral D-dimensional manifolds can be studied systemati-
cally, generalizing previous results for polymers. The en-
couraging lowest-order results for D=1 suggest future
applications of this technique for polymers. The results
for surfaces (D =2), however, although indicating the
qualitative trends, are not of much quantitative value.
Going to higher orders, searching for optimal expansion
points, or combining with d — 0 and/or d — oo series are
possible avenues of further research.

At a more fundamental level this calculation can be
regarded as generalizing traditional techniques in field
theory. Figure 2 depicts Feynman diagrams in which the
usual propagator lines are replaced by manifolds. The
rules and organizations of these manifold diagrams as
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outlined above are in many ways distinct from Feynman
diagrams. From this point of view the SA-manifold cal-
culations serve as a prototype for a variety of new pertur-
bation studies—e.g., to calculate critical behavior of
O(n) spin models, which is one of the directions we are
currently pursuing.

This research was supported by the National Science
Foundation through Grants No. DMR84-18718 at Mas-
sachusetts Institute of Technology and No. DMRS85-
14638 at Harvard and through the MIT and Harvard
Materials Science Laboratories. It is a pleasure to ac-
knowledge many stimulating discussions with Y. Kantor
during the early stages of this investigation. One of us
(M.K.) has benefited from discussions with A. Manohar.

Note added.— After this work was submitted for pub-
lication we learned of work in progress along similar
lines by J. A. Aronovitz and T. C. Lubensky. Dr. Aro-
novitz kindly pointed out an error in our initial evalua-
tion of the formula for v.
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