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Localization and Anomalous Diffusion of a Damped Quantum Particle
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The time evolution of an initially localized state of a quantum particle coupled to a dissipative environ-
ment with spectral density I(to) ~to' for low frequencies is discussed. At finite temperatures, the width
of the state can grow subdiAusively or superdiAusively, depending on o. For a& 2, damping becomes
ineAective for long times and the state spreads kinematically. At zero temperature the spreading is
slower and for a & 1 an initially localized state remains localized for all times.

PACS numbers: 05.40.+j, 05.30.—d

Recently, there has been a great deal of renewed in-
terest in the problem of how the motion of a quantum
particle is aAected by the dissipative influence of a heat
bath. In the low-temperature regime dissipation was
found to lead to novel features suck as the exponential
suppression of tunneling by dissipation, long-time tails
in correlation functions, and most notably dissipative
phase transitions. ' The major part of the recent studies
was inspired by the work of Caldeira and Leggett, who
pioneered a functional-integral approach to the problem.
It was mostly assumed that the environmental coupling
is such that in the classical regime it leads to a frictional
force proportional to the velocity of the particle. This
model of frequency-independent or Ohmic damping was
studied in detail by Hakim and Ambegaokar for a free
particle which is not confined by a potential field. At
finite temperatures the variance cr(t) =((q —(q&, ) ), of
an initially localized state of an Ohmically damped par-
ticle grows difl'usively proportional to t for large times.
At zero temperature, where the spreading is entirely due
to quantum fluctuations a(t) grows only proportionally
to ln(t). Clearly, the Ohmic model describes only a spe-
cial form of the environmental coupling and a rich

variety of frequency-dependent damping mechanisms
occurs in physical and chemical sciences. Here, we in-

vestigate the dynamics of a quantum particle subject to a
dissipative inAuence of arbitrary frequency dependence.

%e consider a particle of mass M which interacts with
a heat-bath environment. Following Caldeira and Leg-
gett, ' we assume that the heat bath can be represented
by a set of harmonic oscillators coupled bilinearly to the
particle. The system is then governed by the Hamiltoni-
an

p2H= ~ + g ' + —,
' m„co2(x„—q)2

As pointed out by Hakim and Ambegaokar, this
translationally invariant version of the Caldeira-Leggett
model can be visualized as a particle with many envi-
ronmental oscillators attached to it. Now, the heat-bath
parameters influence the particle's motion only through
the eAective spectral density

z ~
I(to) =—g m„co36(co —co„),

n 1
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in terms of which the frequency-dependent damping
coe%cient y(co) takes the form

1 t dco' I (co') 2co
co

M "o 7r co' co2+ co'2
(2)

where y(co) is the Laplace transform of the damping
kernel occurring in the classical equation of motion.
Clearly, Ohmic damping [y(co) =y, co«co, ] arises from
a spectral density of the form' I(co) =Myco (co«co, )
~here co, marks the region above which the frequency
dependence of the damping becomes important.

Here we consider a class of models characterized by a
spectral density of the form

I(co) =Mg, co' for co « co, . (3)

%e are interested in the motion of the particle on a time
scale t && co, ' ~here m, is again the frequency where the
simple power-law behavior (3) becomes modified. The
frequency m, may also be looked upon as a cutofT for the

spectral density (3) since the precise form of I(co) for
co & m, influcnces the long-time dynamics of the particle
only for a~ 2 in terms of a mass renormalization.
Spectral densities of the form (3) have been discussed in

connection with particles moving in a fermionic environ-
ment leading to Ohmic dissipation (ct =1) or in the con-
text of the polaron problem ~here a d-dimensional pho-
non bath leads to a =d or a =d+2 depending on the
model. Nonintegral values of a are of possible interest
for diffusion in fractal environments.

To determine the time evolution of the density matrix
of the damped particle we use a functional-integral
method based on the influence-functional theory of
Feynman and Vernon. %e avoid the commonly used
assumption that the initial density matrix factorizes into
separate contributions from the particle and the heat
bath. This enables us to study, e.g. , initial states result-
1ng from pcI turbat1ons of thc cqulllbriUITl state OI fI om
measurements at t =0. A detailed discussion of our ap-
proach will be given elsewhere. Here, we consider an
initial state of the form

p(q, q ', 0) = [2 tra (0) ] 't exp [—(q + q ') /8 cr(0) —[(p 2)~/2 h + 1/8 o (0)] (q —
q ') ],

which is localized around q =0. The probability distribution of the position is Gaussian with width o.(0) and the initial
momentum variance (p )o exceeds the equilibrium value at T = 1/k Bp given by

(p'), = 1+2 g
p „=(v„+y(v„)

as an elect of the position measurement with uncertainty cz' (0). The density matrix of the particle at time t may
now be evaluated exactly for arbitrary forms of the spectral density I(co) satisfying the obvious conditions of integrabil-
ity and I(0) =0. Although the model is linear, the explicit evaluation is quite tedious in the general case of frequency-
dependent damping. The result may be cast into the form

6
p(q, q', t) =[2trcT(t)] exp — (q —

q ) exp & —„(q+q)2 —™(q —
q ) s(l)+ Z(t)Z(t)

2h ' 2cr(t )
" 2h 2a(0)

s(t)
(q —q')' s'(t) —h'i(t) 1

— + Z(t)i(t)s(t)
4h ' a(0) a(0)

J

(4)

«re, X(t) is the response function of a damped particle, which has the Laplace transform

i(co) = [Mco[co+ y(co)] j

where V„=2am/hp This latter re. lation may also be
viewed as a consequence of the fluctuation-dissipation
theorem. Finally, the variance of the position, a(t), de-.
pends on the response function X(t) and the equilibrium
mean square displacement s(t) through

s(t) + h Z (t)
a'(0)

So far, the results presented are exact for all values of t.

Let us now discuss the time dependence of the func-
tions X(t), s(t), and a(t) for long times (t » co, ') for a
particle coupled to an environment with spectral density
I(co) of the form (3). For finite temperatures, the lead-
ing long-time dependence of the mean square displace-
ment arises from the first term in (5) and we have

pt
s(t) -— du Z(w), T )0,&0
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and s(t) =([q(t) —q(0)]2)ti is the mean square displacement evaluated for the homogeneous equilibrium state. The
Laplace transform of the mean square displacement and the response function are connected by

s(co) =— +2 g (v„—co ) —coi(co)
i(co) p 2 i vgi(vn)

(s)
n=i CO
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TABLE II. Asymptotic long-time dependence at zero temperature of the mean square displacement so(t) and the variance of a
wave packet cro (t ) .

so(t)

0&a&1 const const

a=1

1&a&2

(2h/ttMg ~ ) In (t )

h sin~[ —,
' tt(2 —a)]

Mg. I (a)cos[-,' tt(2 —a)]

(2h/ttMg )In(t )

h sin( —,
' tta)/2Mg r(a)

2c 2

cr(0)

a =2 z h t
4~gp ln

(~h/4M g, ) '
o(O) ln't

2&a&3 A. Mg,
t 3 c

M,'I (4 —a)cos[ —,
' tt(a —2)]

(2hMg3/ttM, ) ln(t )
[(h/2M, )'/ (0)]t'

3&a const

On the other hand, at zero temperature, the thermal fre-
quencies v„are continuous and the sum in (5) has to be
replaced by an integral yielding

26so(t) = du X(t/u), T =0.
u~ —

1

Now, (6) and (7) determine the long-time behavior of
the mean square displacement for all temperatures in

terms of the long-time behavior of the response function.
This latter property can be obtained from the low-

frequency behavior of the damping coefficient y(co)
determined by (2) and (3). We find that the cutoff
aITects the leading-order term only for a & 2. However,
it appears in the corresponding numerical factor only via
a renormalized mass. The asymptotic time dependence
of Z(t), s(t), and cr(t) may be worked out explicitly.
The results are summarized in Tables I and II.

For a & 2, the response function /t(t) is proportional to
' for long times. Hence, in the Ohmic case (a = I ) a

constant driving force leads to a constant asymptotic ve-

locity of the damped particle. In the sub-Ohmic case
(a ( I) the particle coordinate grows for constant driv-

ing force but the velocity becomes arbitrarily small. In
the super-Ohmic case (a & I ) the particle responds to a
constant force with an ever increasing velocity. For

o. & 2 the damping effectively vanishes for long times and
a constant force F results in an acceleration F/M, of the
particle where M, is the renormalized mass. In the spe-
cial case a =2 we find the non-power-law behavior
Z(t) ~t/]n(t). The asymptotics of 2(t) does not change
at T=O while this case must be discussed separately for
s(t) and o(t).

At finite temperatures and for e ~ 2 the long-time be-
havior of the variance ~(t) of the initially localized state
(4) is completely determined by the growth of the mean
square displacement s (t ). Both quantities increase ~ t '
for a & 2. This gives diffusive long-time behavior ~t in

the Ohmic case while for a &1 and 1& a&2 the behav-
ior is subdiffusive and superdiffusive, respectively. Again
a=2 yields a nonanalytic growth ~t /ln(t) while for
e & 2 both the mean square displacement and the vari-
ance grow ~t, but the prefactors differ because in this
case the response function also contributes to the vari-
ance. This difference is due to quantum effects and van-
ishes in the classical limit 6 0.

At zero temperature the direction of energy flow can
only be from the particle into the heat bath. Hence, the
mean square displacement grows slower than at finite

temperatures. The variance of the wave packet, howev-

er, depends also on the temperature-independent re-

TABLE I. Asymptotic long-time dependence at finite temperatures T = I/ksp of the response function L(t), the mean square dis-

placement s(t), and the variance of a wave packet o(t). The results for Z(t) remain valid for T=0.

0&a&2
a =2
2&a

[sin(-,' tta)/Mg. r(a)]t
(tt/2Mgz) t / In (t )

(I/M, )t

s(t)

[2sin( —,
' tta)/MPg, I (a+ 1)]t'

(tt/2MPgq) t /ln(t)
(I/M, p) t '

o(t)

[2 sin ( —,
'

att) /MgP. ra(+I ) ] t

(tt/2MPgz) t '/ln(t)
[I/(M, P+ h')/4o(0)M']t '
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sponse function which dominates the long-time behavior of rr(r) for a) 1. Because of the high density of low-

frequency environmental modes the mean square displacement approaches a constant in the sub-Ohmic case (~ & I )
Since in this regime the response function vanishes asymptotically the width of the wave packet is finite for all times.
Hence, an initially localized state remains localized even though the particle is not confined by an external potential.
The localization length

(t ~) =(a(0)+ [2t't j(2 —a)Msin[rr/(2 —a)]] [sin( —,
' rra)/g, ] ' ' ) '

diverges as the Ohmic case is approached. In the Ohmic
case the mean square displacement grows ~In(t) for
large t which also determines the long-time behavior of
the variance rT(r ). In the region I & a & 2 the mean
square displacement grows algebraically ~ i' '. The
fastest asymptotic growth is found for a =2 where
so(t) ~t/[ln(t)] while for 2 & a & 3 the rate of growth
decreases with increasing a yielding so(t) ~t '. Loga-
rithmic growth of the mean square displacement is found
again for a=3 whereas for a&3 it approaches a con-
stant. This decrease of the asymptotic value of so(t) is

connected with the fact that the ground state of the
damped particle approaches the zero-momentum state of
a free particle for large a.

In summary, we have investigated the quantum
diAusion of a particle for a wide range of environmental
couplings. We have studied a simplified model allowing
for the derivation of exact results. However, the type of
asymptotic long-time behavior found here can be expect-
ed to remain unchanged for most values of a when the
particle moves in a periodic potential. In this case the
particle is localized at T=O for Ohmic damping provid-
ed the damping constant is large enough. In contrast,
the localization found here for a free particle and a & 1

persists for arbitrarily small coupling to the heat bath.
Some of our findings are also of interest in view of the
polaron problem. While the Hamiltonian (1) can only
describe the absorption and emission of phonons, the
eA'ect of phonon scattering vanishes as T =0 is ap-
proached so that the heat bath can model the influence

! of phonons at very low temperatures except for very long
times. Finally, we mention that our results for T=O are
not purely academic since the zero-temperature behavior
is also found for low finite temperatures for intermediate
times cu,

' « r « 6/kaT
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