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Path-Integral Approach to Ising Spin-Glass Dynamics
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Path integrals are introduced for Glauber dynamics of interacting Ising spins, equivalent to stochastic
equations for local magnetizations. This enables us to perform quenched averages. For the
Sherrington-Kirkpatrick model of spin-glasses the low-frequency dynamics is determined for all temper-
atures and fields.
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Spin-glasses are essentially a dynamic phenomenon. '

Now there is numerical evidence for a true phase transi-
tion of Ising spin-glasses in three dimensions. The tran-
sition in an external field is under discussion. In the or-
dered phase one assumes the existence of infinite energy
barriers corresponding to infinite relaxation times. Re-
laxational dynamics of Ising spins is conveniently de-
scribed by Glauber dynamics which successfully has
been used in Monte Carlo simulations of Ising spin-
glasses. In this Letter I propose a path-integral method
to find analytic results for quenched random Ising sys-
tems. I apply it to the Sherrington-Kirkpatrick (SK)
model of spin-glasses. The method may be useful for
the random-field model as well, which has interesting dy-
namic properties too.

Sompolinsky and Zippelius have used soft-spin dy-
namics to derive results for Ising spin-glasses, especially
for the SK model with long-range random interactions
((J~)A, =J /N). However, one is only able to formulate
the problem perturbationally with respect to the four-
spin interaction of the soft spins, u, which goes to infinity
in the Ising limit. Fortunately, u drops out in certain re-
sults in the critical regime, so that one hopes that these
results will be correct for "hard spins" too. One is not
able to calculate any dynamic correlation function of soft
spins in a wider frequency and temperature regime, not
even for free spins. For free Glauber spins, however, one
knows all correlation functions, which are useful to con-
struct a field theory. Below I present a generating func-
tional for all correlation and response functions.

I also derive the corresponding generating functional
for the SK model, which allows us to find a numerically
solvable equation for the dynamic local susceptibility,
valid in the low-frequency regime for all temperatures
and external fields. This means that the solution shows
the correct frequency behavior, while the absolute fre-
quency scale can only be determined perturbationally.
The approximation may be systematically improved,
obeying the dynamic fluctuation-dissipation theorem
(FDT) step by step. In the scaling regime I recover the
dynamic critical exponent found by Sompolinsky and
Zippelius and the scaling function above the de
Almeida-Thouless (AT) line, derived by Sommers and

Fischer. In zero external field for T) T, the equation
is solved explicitly. It is correct up to (T,/T)' for all
frequencies and has a co ' dependence for T = T, . These
results improve previous attempts to treat the Glauber
dynamics for spin-glasses. ' Those authors tried to in-
troduce phenomenologically the Onsager correction term
into Glauber mean-field equations.

I am also able to determine the statics or "dynamics
on infinite time scales"" below T, . It turns out that
with use of the FDT the statics is determined by a
quenched local-field distribution, ' ' P(y), so that the
average magnetization is given by

1 —(pJ) ((1 —m ) )A, =O (2)

leads to the algebraic decay of correlation functions
found by Sompolinsky and Zippelius (SZ). P(y) may
be found from a solution of the SZ saddle-point equa-
tions which violate the FDT on infinite time scales. This
is not a contradiction because I am considering the relax-
ation of the system from a nonequilibrium initial condi-
tion. Since I allow for an anomalous response on infinite
time scales, the field distribution evolves from a Gaussian
to P(y), which is highly correlated. ' One is also able to
calculate higher-order correlation functions on infinite
time scales, ' which show the same ultrametric topology
in time, as found by Mezard et al. ' in the space of pure
states. In fact, the method to be described consists of
writing the true Glauber spin-distribution function for all

(m)A„=J dy P(y)tanh(Pb+Py),

where b is the local external field. Similar expressions
hold for local static responses. In the paramagnetic
phase P(y) is Gaussian with zero mean and variance
J q, where q =(m )A„ is the Edwards-Anderson order
parameter (q =0 in zero external field). In the spin-
glass phase P(y) is non-Gaussian and a complicated
functional of the Parisi order parameter. '" Going back
to Thouless-Anderson-Palmer (TAP) mean-field equa-
tions' this means that the contributions from different
sites to the mean field at a given site are not statistically
independent in the spin-glass phase. The marginal sta-
bility condition
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times as an average over a distribution of independent
spins with magnetizations obeying stochastic equations.
On long time scales this corresponds to the decomposi-
tion of the Gibbs state into pure states, as suggested by
De Dominicis and Young' and Parisi. '

I now sketch the derivation of the results. I consider

Glauber dynamics for random Ising-spin systems {a;j.
Introducing the local field

h( = br +gl. Ji) at (3)

where b; is the local external field and J;J the exchange

!
interaction, we have the master equation for the spin dis-
tribution,

dP{a,tj/ctt = —g,. (1 —S;) —,
' I (I —o;tanhPh;)P{cr, tj =XP{o,tj. (4)

I only consider one-spin-flip processes: 5;o.; = —cr;. The flip rate I is choosen to be constant but in general may de-
pend on h;. I choose the initial condition P{o,Oj =+i(1+mj oj)/2. The equilibrium solution P{cr,tj ~exp( PH)—
obeys detailed balance and leads to fluctuation-dissipation theorems. One may derive a number of generalized FDT s
in external field. Below I argue that P{o,tj may be written as a functional integral over a distribution of independent
spins:

r ~g
P{cr tj =Jr Q X)a, Scr exp —

J dzg. ia (z)[cr (z) —m (z)] + [I+m (t)cr ]. /2 =(+1[I+m (t)cr ]/2). (s)

The local magnetizations m;(t) obey exact stochastic equations

m; =i cr; (1 —m, ) —I [m; —tanh (Pb; +g PJ ~ aj ) ]., m; (0) =m;,

which are reminiscent of time-dependent generalizations of TAP equations. The weight ( ) determines general spin
correlations (o~(t 1) o„(t„))(0 & t; & t). For example, for independent spins

((crl (t )) o„(t„))= 6

gaia)(t, )

6 I

exp g. „dzicrjmj (7)

The distribution P {cr,t j can be averaged over the weighting function

P(J) ) ~exp( —J;,z/2J )

(SK: z =N) using the identity

1 =Q „2)h Q, 8 h, ( ) —b —g, J;;( ) (9)

Applying this identity directly to the formal solution P{o,tj =Texp[fodzX(z)]P{cr Oj and introducing conjugate
variables h~ for the exponential representation of the 6 function we may evaluate the time-ordering product T
leading to Eq. (5).

For the SK model we can perform the quenched average by saddle-point integration for N ~ following SZ. This
leads to mean-field equations for local correlation and response functions

C(t, t ) =(a(t)o(t )), G(t, t ) =6(o(t))/Bb(t )

With an obvious abbreviation for the time arguments, (A') is given by
r

(X) =& Sh 2)h 2)o X)crexp —i „h(h —b) —i, o(a —m) exp —J „C(1,2)h(1)h(2)/2

+J JI G(1,2)ih(1)cr(2)

where m (z) obeys the stochastic differenial equation

m =io(1 —m ) —I (m —tanhPh), m(0) =m .

(i0)

(12)
J1

I have choosen a homogeneous initial condition. The 2)h 23h integration leads to a local held,

h (1)=b+ Jy(1) +J J~ G(1,2) cr(2), (i3)
with Gaussian correlations of p, (p(l)) =0, (p(1)p(2)) =C(1,2). The saddle point is stable, since the solution is
unique.

I first discuss the solution in the paramagnetic region. I let the initial time to (which was set equal to zero) go to
Then the correlation functions are expected to depend only on time differences. From (11) we find the generat-
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ing functional for correlation and response functions

Zjicr, bl =)i dyP(y)exp J C(1,2) +J ~ G(1,2)
2

'
Sh 1 6h 2 &)2 '

Bh 1 Pier(2)
exp J' icrm . (14)

h =b+y

The correlation and response functions are evaluated by the appropriate derivatives of Z taken at ci. =0. We have split
off the long-time parts: C(t —t') =C(t —t')+q, G =G, leading to a quenched Gaussian local field ((yz)A„=J q, (y)A„
=0). By means of the FDT one now may derive that the statics is independent of the short-time parts, C, G, leading to
Eq. (1). Therefore, one knows the exact static limits of all the correlation functions and one is able to make perturba-
tion theory for fixed P(y) with respect to J C, J G, obeying the FDT step by step. This should give at least the dom-
inant low-frequency behavior. Indeed we will see that for i co i

« I and fixed P(y) the expansion in (pJ) is at the
same time an expansion in G(co) —G(co =0). To zero order one finds

C(t)((1 —m 2))p„e rl'I G(co) =P((1 —m 2)&A„[I/(I —i co/F)]j,

where m =tanh(pb+ py) and G(co) is the Fourier transform of G(t) (=0 for t & 0). The next order yields

G(co) = + (PJ) ((1 —m ) )A„—G(co=0)P((1 — '))„1.. . G(„)
1
—i co/I 1

—i co/I 1 —ico/I

with the solution

1
—(PJ) '((1 —m') ')„

G co =P 1
—m

1
—ico/F —(pJ) ((1 —m ) )A„/(I —ico/r)

(17)

The validity of this approximation is violated for co&0 near the AT line, defined by condition (2). In this case we have
to go one step further in the expansion. Using a systematic diagram expansion we find after some algebra,

(1 ico/F—) =((1 —m')&, +(PJ)'((1 —m')') „
G(co) 2 2 2 2 G(co) G(co =0)

+ (PJ)'((1 — ') ')
P(1 —ico/r)

2

+ (PJ)'(2m'(1 —m')') jo dre' 'c—)C(r)'/c1r
1
—i co/I

G(co =0)
' 2

(18)

This equation goes in the limit i co i « I exactly to the
scaling equation derived by Sommers and Fischer with
the help of soft-spin dynamics. A more rigorous proof of
Eq. (18) in the critical regime goes along the lines of
SZ. Equation (18) for i co i

« I follows by expansion of
the full renormalized G(co) with respect to the singular
parts of the self-energy, since (18) already contains the
exact static vertices. Equation (18) determines also ap-
proximately the absolute frequency scale which was open
so far. Note, that the FDT relates G(r) and C(r) by
G(r) = —PC(r) for r & 0. For all frequencies G(co)/P
is determined exactly by Eq. (18) up to order (pJ) .

The short-time behavior co ~ may be determined ex-
actly with the help of the true local-field distribution. '

For zero external field we may set m =0 and solve (18)
explicitly. It changes continuously from the scaling
form near T=J =T, to the high-temperature solution
(15) or (17). The marginal stability condition (2) on the
AT line leads to a power-law behavior G(co) —G(co
=0)~(—ico/I )". v equals —,

' in zero external field and
changes because of the last term in Eq. (18) along the
AT line. It should be stressed that v is identical to the
SZ result. Equation (18) is valid in the spin-glass

phase too, if P(y) is reinterpreted as mentioned in the in-
troduction. Again we find the same power-law behavior
as SZ. The nature of the spin-glass phase will be dis-
cussed below. For T 0 Eq. (18) yields, for all co,

G(co) ~ T.
The spin-glass phase is nonergodic. This means that

there exists response over infinite time scales. These
time scales may go to infinity according to an Arrhenius
law, ~here the energy barrier scales with some po~er of
the number of spins, N. We know that the system ap-
proaches equilibrium if N is finite. In this case we re-
gard Eqs. (9) and (10) as a saddle-point approximation
and look for a solution where N drops out in the limit. A
detailed analysis is required to check the consistency.
We split off the long-time parts C(1,2) =C(1,2)
+Q(1,2), G(1,2) =G(1,2) —PA'(1, 2), where Q and 5'
are allowed to vary on time scales Tp with lnI Tp)&1,
while C and G vary on the scale 1/I and obey the FDT.
Tp is of the order of the equilibration time of the system.
As above, for the long-time properties C and G do not
contribute and in Eq. (12) we may let I formally go to
infinity. The result is a mean-field theory for correla-
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tions on long-time scales. Introducing a hierarchy of
infinite time scales one recovers Sompolinsky's equations,
which give results equivalent to Parisi s replica solution
of the SK model. If one looks at finite-time correla-
tions one sees that the coupling to the infinite-time corre-
lations is governed by a local field with distribution P(y).
This shows that the generating functional (14) for finite
time correlations is valid in the spin-glass phase too. The
relation to Sommers-Dupont ' is P(y —b) =Psn(l, y),
where PsD(l, y) is the distribution of TAP magnetiza-
tions tanhPy. Thus, the finite-time dynamics is confined
to a single valley of the TAP free energy.

In summary, I have demonstrated that the path-
integral approach to Glauber dynamics is a powerful tool
in the treatment of the spin-glass problem. Results of
soft-spin dynamics above the AT line are rigorously
confirmed and generalized. The Parisi and Sompolinsky
solution of the SK model are simply obtained by a
hierarchical Ansatz of infinite time scales. Around this
static solution the finite-time dynamics is determined
perturbationally. Results may be compared with Monte
Carlo computer simulations. It is straightforward to
construct a field theory for short-range systems. In the
future the method may be applied to kinetics of fer-
romagnets and dynamical optimization. An interesting
application is the dynamics of neural networks, where
one may allow for asymmetric bonds, i.e., violation of de-
tailed balance. For instance, one may solve directly the
fully asymmetric SK model as considered by Hertz et
al. and show that in this case a transition to a spin-

glass state is forbidden.
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