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Heavy-Fermion Behavior and the Single-Ion Kondo Model
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Measurements of the temperature and concentration dependence of the specific heat, magnetic sus-
ceptibility, and electrical resistivity for Ce;-xLa,Pb; are presented. The data scale with the concentra-
tion of Ce ions over surprisingly large intervals of x and 7. The low-temperature specific heat per Ce ion
agrees quantitatively with that of an S =7 Kondo impurity of Tx==3.3 K. These results strongly sug-
gest that intersite correlations do not play the expected important role and that the high specific heat y
reported for CePbs is mainly a manifestation of the single-ion Kondo resonance.

PACS numbers: 72.15.Qm, 75.20.Hr, 75.50.Ee

Within condensed matter physics, one of the most ex-
citing problems to have emerged during the last several
years has been to understand the perplexing properties of
heavy-fermion (HF) systems'~3 and their relation to the
broader issue of magnetic-moment formation. Charac-
teristic of heavy fermions is an unusually large electronic
specific heat at low temperatures, C =yT, where y corre-
sponds to a very high density of states at the Fermi level
or equivalently to an effective electron mass of 102-103
times that of the free-electron mass. As a consequence
of the large density of states these systems typically have
a large Pauli susceptibility. The temperature depen-
dence of C and X can be explained in terms of narrow
resonant levels or a narrow band with a typical width of
a few millielectronvolts or less. This narrow peak in the
density of states has been attributed®3 to a Kondo reso-
nance, to hybridization effects and to Fermi-liquid prop-
erties, and its formation is still to be understood.
Heavy-fermion behavior occurs in a variety of Ce-, Np-,
U-, or Yb-based (concentrated or dilute) alloys and
stoichiometric compounds.

The low-temperature transport properties of stoichio-
metric HF compounds differ from those of alloys, while
at high 7, they are very similar. In compounds, the
resistivity initially increases as one lowers T (which can
be attributed to the Kondo effect), then goes through a
large maximum and shows a sharp decrease at very low
T. Both features, the existence of a maximum and the
high resistivity at this maximum, are uncommon to nor-
mal metals. The rapid decrease of p(7T') at low T is
caused by a transition from incoherent to coherent
scattering of the conduction electrons by the rare-earth
(actinide) ions.!=3 In alloys, on the other hand, the low-
temperature low-energy excitations are not coherent and
p(T) remains at its high value as T— 0.

Compounds may become antiferromagnetic or super-
conducting at low T as a consequence of the coherence of
the low-energy excitation spectrum. Anomalous super-
conductivity has been discovered in some U compounds
with highly unusual properties which may be due to trip-
let pairing.*> The parameters or interactions determin-

ing the low-T phase, i.e., superconducting, magnetically
ordered or a Pauli paramagnet, are still to be under-
stood, as well as the mechanism leading to superconduc-
tivity.

At high temperature, the conduction electrons are in-
coherently scattered by the rare-earth ions and the prop-
erties, when scaled by the concentration, are then expect-
ed to be similar to isolated impurities and can be de-
scribed by the Anderson or Cogblin-Schrieffer models
with appropriate crystal fields (for exact and approxi-
mate solutions, see Refs. 2, 3, Rajan,® and Andrei, Furu-
ya, and Lowenstein’). When the temperature is
lowered, the impurity spin is gradually compensated by
the conduction electrons to form a singlet state. At
T =0 the spin of an isolated impurity is screened within
a sphere of radius® £~ X/kgTx, where D is the band-
width, kF is the Fermi momentum and Tx is the Kondo
temperature. This length is much larger than interatom-
ic distances and is expected to decrease when the screen-
ing becomes incomplete with increasing 7. In a concen-
trated system, these spheres overlap at low 7T and the
screening can no longer be regarded as that of individual
ions.” The interference between different rare-earth (ac-
tinide) sites should modify the properties of the system.
Furthermore, in concentrated systems the number of
available conduction electrons may not be sufficient to
screen the rare-earth ions individually and a collective
screening'® giving rise to antiferromagnetic fluctuations
has been invoked. The above arguments are valid for
stoichiometric compounds as well as for concentrated al-
loys.

Although some limiting cases of the above HF picture
are well understood, it is still not clearly established to
what extent the local single-ion features survive at inter-
mediate temperatures. For the “lighter” HF compounds
YbCuAl and CeSnj a surprisingly good agreement for %,
C, magnetization and neutron-scattering linewidth with
the single-impurity theory has been found!! down to very
low 7. Such a study is difficult in the ‘“heavier” HF
compounds, because of the small characteristic energy
scale and large crystal-field effects. In such systems, the
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role of the site-to-site correlations of the f electrons is
more conveniently probed by alloying studies. In several
studies'? Ce ions have been gradually replaced by La,
e.g., (Ce,La)Als, '3 (Ce,La)CusSiy, ' (Ce,La)Ge,, 1 and
(Ce,La)Bg,'® or by Th, e.g., (Ce,Th)Pd;.!” Unfortu-
nately, alloying in these systems (unlike the one reported
here) changes the degree of valence mixing or Kondo
temperature as well as the crystal-field splittings, compli-
cating the analysis, such that only a qualitative compar-
ison is possible.

Within this Letter, we present measurements of the
electrical resistivity, p(T'), specific heat, C(T), and sus-
ceptibility, X(T), for Ce; —,La,Pbs. This system has the
fortuitous and (so far) unique property that the relevant
parameters (T and crystal-field splitting) are concen-
tration independent. This permits one (for the first time)
to appraise quantitatively the effect of the intersite corre-
lations of the f electrons for the entire concentration
range 0 < x <1 and as a function of 7. The x =0 end
point corresponds to CePb; which is a HF antiferromag-
net displaying coherent behavior with unusual high-field
magnetoresistance. '8

The polycrystalline (Ce,La)Pb; samples were prepared
in an inert atmosphere arc furnace with appropriate care
taken to compensate for the weight loss of the more vola-
tile constituent, Pb. The samples were annealed under
high vacuum at 600°C for one week. Powered x-ray
diffraction studies revealed that all samples were single
phase and the diffraction pattern is indexable to a face-
centered-cubic structure. The concentration dependence
of the lattice constant followed a linear behavior across
the series without any indication of a valence change.
The electrical resistivity, p(7T), was measured using a
conventional four-probe dc technique. The specific heat
C(T) was measured using both a quasiadiabatic method
for 1.5<T <20 K and a low-mass thermal-relaxation
method for 0.4 < T =<4 K. The magnetic susceptibility
X(T) was measured for 1.8 < T <300 K by use of a
commercial vibrating sample magnetometer.

Shown in Fig. 1 is the temperature dependence of the
magnetic contribution to the electrical resistivity, p,, (T),
defined to be equal to p(T) for (Ce,La)Pbs minus the
temperature-dependent resistivity of LaPb; (the non-
magnetic, isomorphic, analog of CePb;). In Fig. 1(a),
pm(T) for T <20 K and x <0.15 is displayed. Clearly
shown in this figure is the onset of coherence, consider-
ably above Ty =1.1 K, for the strongly correlated pure
CePb; sample (x =0). That is, p, begins to decrease
markedly below 2.5 K for the x =0 sample. This coher-
ence is rapidly suppressed upon dilution and by x =0.2,
there is no evidence of coherence to the lowest tempera-
ture measured, T=0.4 K. In Fig. 1(b), the temperature
dependence of p,,(T) over an extended range of La-
concentration is displayed. If the measured p,,(T) is
normalized by the Ce concentration, i.e., p,, (T)/(1 —x),
the data collapse onto a single curve for all x = 0.2 with
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FIG. 1. Magnetic resistivity p, vs temperature for
Ce;-xLaxPbs samples. Here p, is defined as the total resistivi-
ty minus the temperature-dependent resistivity of LaPbs. (a)
x=0, 0.1, and 0.15 up to T=20 K. (b) x=0.2 to 0.8 up to
T=100 K.

a slight spread in the data of about 5% (the shoulder for
x =0.8 is somewhat more pronounced, but within the 5%
spread). The p,,(T)/(1 —x) data are qualitatively con-
sistent with a recent calculation by Maekawa and co-
workers!® of the resistivity of a Cogblin-Schrieffer im-
purity with J=13% (Ce3") with appropriate crystal-field
splitting, A. The resistivity shows a peak or shoulder due
to the gradual freezing out of the crystal-field states.
The peak is broadened as a result of relaxation and at
low T a peak due to the Kondo resonance arises. The
crystal-field peak (shoulder) appears at a temperature of
about 1/3 to 1/2.5 of the splitting if A is large compared
to Tk. Neutron studies?® have shown that the J =13
Ce3* Hund’s-rule ground state is split by the cubic crys-
talline electric field (CEF) into a I';-doublet ground
state and an excited I's quartet with a CEF splitting
=66 K.!” Hence, the CEF shoulder should appear at
about 25 K in the resistivity, in agreement with the
findings for all x. Thus, for x =0.2, p,,(T)/(1 —x) is
independent of x, suggesting that Tk and CEF splitting
are also independent of x.

Figure 2 shows X(T) per mole Ce versus T. As with
pm(T) [and as we will see below for the excess specific
heat, AC(T)], 2(T') per mole Ce is independent of con-
centration. For T > 20 K, the X(T) per Ce can be fitted
to a modified Curie-Weiss law, i.e., X(T)=C/(T+T*)
with T* =18 K and an effective paramagnetic moment
of 2.5up. These results are consistent with those recently
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FIG. 2. Magnetic susceptibility per mole Ce vs T for
Ce;-xLayPb; samples, x =0, 0.2, 0.4, 0.6, and 0.8. Inset:
Magnetic susceptibility per mole (not per Ce mole) vs T for
the same samples.

published by Durkop et al.?! Durkop et al.?! have mea-
sured X(T) and for the low-temperature data (.e.,
Tn<T <4 K), the data were fitted by a modified
Curie-Weiss behavior. For this low-temperature region,
they obtained peg=1.6up and T*=7.5 K. This T*
value is consistent with a low Tk obtained from specific-
heat results to be presented next.

Shown in the inset of Fig. 3 is C(T)/T per mole Ce
versus T2 for (Ce,La)Pb; at T=1.5 K. Note that
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FIG. 3. The excess specific heat per mole Ce divided by
temperature, AC/T vs T? for Ce;—,La,Pb; samples, x =0, 0.2,
0.4, 0.6, and 0.8. For a definition of AC/T see the text. Inset:
Total specific heat divided by T, C/T vs T?, for the same sam-
ples.

1234

C(T)/T data for T=1.5 K approach a common limit in-
dependent of x. Shown in Fig. 3 is AC(T)/T per mole
Ce versus T2, where AC(T) is C(T) minus the T3 ob-
tained from a fit of C(T) =yT+BT? for 8 < T <20 K.
The subtracted contribution is due to the lattice. There
was only a slight variation of B across the alloy series ob-
tained from this analysis, i.e., for CePb; B=4.09
mJ/mole K* and for LaPb; $=4.33 mJ/mole K* The
amazing result displayed in Fig. 3 is that AC(T)/T
versus data for all samples collapse onto a single curve
for 1.5 < T <8 K as did the X(T') curves of Fig. 2. This
also indicates that Tk is independent of concentration.
Hence, the extremely enhanced y=C(T)/T previously
reported for CePb; (which orders antiferromagnetically
at Ty =1.1 K) cannot be dismissed as simply a precursor
to a magnetic transition since as little as 20% La
(x =0.2) appears to drive Ty to zero and AC/T per mole
Ce is independent of Ce concentration.

Shown in Fig. 4 is AC(T) per mole Ce versus
log(T/Tx) for three samples of widely varying Ce con-
tent (60%, 40%, and 4%) which do not order magnetical-
ly. Plots of AC(T) versus In(T') have a maximum at 2.3
K which is again independent of Ce concentration. Since
exact calculations of C(T) vs T for a single-ion Kondo
model® predict a maximum in C(T) at T=0.7Tg we
find Tx =3.3 K for all three samples. When one consid-
ers that there are no theoretical parameters other than
Tk, i.e., the magnitude and temperature dependence of
C(T) vs T is completely specified, the excellent agree-
ment of theory (solid curve of Fig. 4) and data for 4%,
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FIG. 4. The excess specific heat per mole Ce, AC vs
log(T/Tx) for Ce -xLasPbs samples with x=0.4, 0.6, and
0.96. Here Tk is the Kondo temperature (3.3 K for all three
samples) and AC is defined in the text. The solid curve is the
theoretical fit involving no adjustable parameters other than
Tk as discussed in the text.
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40%, and 60% Ce is quite remarkable. For x <0.4
(more than 60% Ce) a slight upswing is seen below
T/Tx=0.4 because of magnetic correlations which
eventually lead to magnetic ordering for the very Ce-rich
alloys. However, the large y observed for CePb; down to
T=15 K (ie., 0.4 K above Tx=1.1 K) appears to be
totally attributable to an enhanced density of states due
to the single-ion Kondo resonance at the Fermi energy.

In summary, we found that for Ce,_,La,Pb; the
relevant parameters, e.g., Tx and the crystal-field
scheme, are independent of the concentration. The resis-
tivity, p,(T), the susceptibility, X(T"), and the specific
heat, AC(T), scale with the concentration of Ce ions
over a surprisingly large interval of x. Exceptions to this
scaling are the antiferromagnetic order (and precursing
fluctuations) and the onset of coherence in the resistivity
for x <0.15 at low 7. At intermediate temperatures
and x < 0.15, p,,(T) shows minor deviations from scal-
ing which may be a precursor to coherence and/or due to
a small renormalization of Tx. Furthermore, we have
shown that the scaled specific heat agrees quantitatively
with that of an S =% Kondo impurity® and the scaled
resistivity is qualitatively in accord with the theoretical
prediction'® for a Ce ion.

In conclusion, the interference effects between differ-
ent Ce sites in (Ce,La)Pbs are surprisingly small. The
impurity picture is valid over a larger temperature inter-
val than expected, even for Ce-rich samples. The high y
value of CePbj is to be attributable to the Kondo reso-
nance, rather than to other Fermi-liquid corrections. Al-
though our experimental findings quantify the interac-
tion effects between Ce ions, the key question® as to how
a concentrated Kondo system with almost noninterfering
sites can exist remains unanswered.
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