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Diselinations in Quasicrystals
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The most significant feature in the transition from the quasicrystalline to the amorphous state is the
loss of long-range bond-orientational order. Disclinations are candidates for elementary excitations
which destroy angular correlations. Generalizing the topological defect classification, we investigate
point singularities in two-dimensional pentagonal quasicrystals and construct disclinations, dislocations,
and disclination dipoles.

PACS numbers: 61.55.Hg, 61.50.Em, 61.70.6a

The Al-Mn alloy "shechtmanite, " which exhibits a
difI'raction pattern of icosahedral symmetry, ' is com-
monly interpreted as a quasicrystalline state of matter.
Soon after the discovery of this exceptional phase, Ur-
ban, Moser, and Kronmuller studied transitions from
the quasicrystalline to the amorphous state of A186Mn~4
by electron irradiation. During the process a series of
electron diff'raction patterns was taken. These show
several of the decagonal stars of sharp diAraction spots
gradually developing into rings of the same radial dis-
tance. The results indicate that the local neighborhoods
of the atoms are preserved while the angular correlations
of diA'erent neighborhoods are perturbed.

The features remind us of the melting process of the
two-dimensional hexatic phase proposed by Nelson and
Halperin. The melting is initiated by the unbinding of
disclination-antidisclination pairs. It is quite possible
that disclinations are the relevant elementary excitations
destroying the angular correlations in quasicrystals and
thus driving the transition to the amorphous state. But
what is a disclination in a quasicrystal?

To approach an answer to this question, we restrict
ourselves to two-dimensional pentagonal quasiperiodic
patterns and study their topologically stable point
singularities —including disclinations. These patterns—
frequently called Penrose patterns —have been analyzed
in detail by de Bruijn and —in three-dimensional
extension —by Mackay, Duneau and Katz, and Kra-
mer and Neri.

Topological defects are closely related to the symme-
try of the perfect system. They are characterized by
closed loops traversing the so-called order-parameter
space V. ' For periodic crystals this space is found in
the following way: At a point P of the defected crystal a
copy of the perfect medium is placed such that the two
structures coincide locally. The order parameter at P is
constituted by the set of rigid-body operations, which
move a uniform reference system into the position of the
copy. This set is the coset gH, where H denotes the
space group of the perfect crystal and g is an element of
the unbroken symmetry group G. The group G leaves
the free energy of the system invariant. The order-

parameter space itself is the coset space G/H
Quasicrystals do not possess a space group, because

they are not periodic, and we cannot specify the order-
parameter space immediately. We have to investigate
the symmetry properties with care, starting from the
construction principles of a perfect Penrose pattern.

One method to obtain a Penrose pattern is the projec-
tion method, which we apply here in a slightly
modified form. " It is based on a hypercubic lattice I 7
in the five-dimensional Euclidean space E . The lattice
is shifted from the origin of E by a vector
7 6 R:L7

=7+Z . In E a two-dimensional subspace
PT, the tiling plane, is embedded in such a way that it
remains invariant under C5, the group of cyclic permuta-
tions of the canonical basis vectors of E . Aside from PT
the group Cs leaves the diagonal 5 = (1, 1, 1, 1, 1) and and
another two-dimensional subspace P& of E invariant
and divides E into three subspaces: E =PT+ P &+h.
By moving the unit cube 8' along PT one cuts out a
strip S=PT+8' . The projection of the union of all
two-faces entirely contained in S yields a tiling of PT of
fivefold long-range bond-orientational symmetry.

With respect to a lattice point, the symmetry group
HI. of L„ is the semidirect product of the hyperoc-
tahedral group Q(5) and the translational group Z . If
we consider all operations with respect to the origin of
E, we have to conjugate HI. with a translation fl, yl by
the shift vector y.. HL "'=f1,y}/A(5)AZ I jl, yf '; A

denotes the semidirect product. Our perfect system con-
sists of three parts: I„, S, and PT. By definition all sym-
metry operations act only on L„(active viewpoint); S
and PT are fixed in E . Now we can state that HL "" is
"a symmetry group of the Penrose pattern, " in the sense
that a tiling projected from L„is identical to one project-
ed from HL'""L„=L„.

As in the case of periodic crystals we identify the
order-parameter space with a coset space V=G/H. G is
the group which produces set of patterns of the same free
energy. Such sets are the local ismorphism (Li)
classes. ' The tiling projected from a lattice gL„, g E G,
is in the same LI class as the tiling projected from L„, if
the following conditions are fulfilled.
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(a) The vectors t in the translations jl, tj E G are ele-
ments of the orthogonal complement of 6 in E, denoted
by R because the shift vectors y+t of the lattices
jl, tjL„L„it must have the same projection onto 6
as y.

(b) Certainly, pure rotations in G must be compatible
with the translations in R . So the rotational part Go of
G is a subgroup of the direct product SO(4)niS I~.
Furthermore, the slope of PT with respect to the lattice
must not change. Otherwise even the shape of the tiles is
altered. It follows that Go equals SO(2) T SSO(2) &

S lg. G itself is the semidirect product GOAR
The group H has to be a subgroup of G, and so it can-

not be the full symmetry group Hl "', but only the sub-
group

H G QHr "j fl, yj/C5AT j/I, yj

T' C R is the group of those discrete translations of Z
which have no component along h. An element t* has
the form t' pe &n;a;; n; C Z; a; eo —e;.

As in the case of normal crystals, every point in V
(i.e. , every coset of H in G) corresponds to a perfect sys-
tem, which arises from a reference system by the action
of any element of the coset. But in contrast to periodic
crystals, two perfect quasiperiodic patterns which belong
to diff'erent points in V may not be matched by a rigid
motion. They are only locally isomorphic and not glo-
bally. This is a consequence of the fact that in general
the action of an element g E G on L„changes the union
of two-faces in S and also the tiling itself.

More general defects can be constructed by choosing
as order-parameter space V E(5)/Hl. "'.

Point singularities in two-dimensional patterns are
topologically classified by the fundamental group of the
order-parameter space, x|(V). ' Because H is discrete,
xl(V) is isomorphic to the lift H of H into the universal
covering group G of G: xl(V) H ll, yj {ZAZ j
x j 1, yj '. An element r E Z labels a rotation by
r x 72'. An element (n l, n2, n3, n4) & Z marks a transla-
tion by the vector t' -+4,n;a;

Dislocations. —If we consider only translational
displacements in a pattern, we have to deal with a re-
duced order-parameter space V R /T', which already
has been investigated by Kleman, Gefen, and Pavlo-
vitch.

The defects are labeled by ni(V) -Z . Each element
(n i, n n2n34) E Z corresponds to a Burgers vector
b -t'.

2. Disclinations. —A pure disclination corresponds to
the conjugation class jl, yj jr, T,*„bjfl, yj ' of an element
fl, yj jr, Ojf1, yj '. T,'„b denotes a sublattice of T*.' It is
spanned by the vectors (1 —r)a;, i 1,2, 3,4 (details are
described in a forthcoming publication; see also Ref. 10).

As an example we consider a 72 disclination at the
origin of E . The corresponding element of x|(V) is

Before discussing this disclination, we recall a disclina-
tion in a square lattice. It is classified by the element
fr, Oj, where r denotes a rotation about r x90'. As an
example, take r 1. Again we use the Volterra process,
which now consists of the following two steps: (1) Cut
out the third quadrant of the square lattice and identify
the lip at 0' and the lip at 270'. (2) Glue the two lips
together by rotation of the lip at 270, thus distorting
the medium.

In a Penrose pattern, it is generally not possible to
construct a disclination by cutting out or, in the case of
r (0, adding a sector of the tiling, because there is no
global fivefold symmetry (an exception is the highly
singular case y=Q). How to proceed becomes clear if
we rewrite Eq. (1) in the following way:

After one encircles the core of the defect, the lattice L„
has changed to a lattice L„+b. We have to choose a spa-
tially varying shift vector y(x). In the simplest case y is
only a variable in 8, the polar angle in PT. y(8)
=y(0)+(8/2x)b (see, for example, Lubensky, Socolar,
and Steinhardt' ). To construct a dislocated tiling, we
have recourse to the Volterra process. For periodic crys-
tals, it consists of two steps. (1) Remove a slice of
matter corresponding to the Burgers vector and identify
the lips. (2) Glue the lips together by distorting the lat-
tice. If b is a lattice vector, they match.

It is straightforward to generalize this rule to the case
of Penrose patterns. First we change from the former
active viewpoint (unshifted strip S, shifted lattice L„) to
an equivalent passive viewpoint: lattice fixed, strip
translated by —y. Then we manipulate both the lattice
L and the strip S-„. In L, step (1) of the Volterra pro-

FIG. 1. Step (1) of the Volterra process for a dislocation of
Burgers vector b (0, 1,0,0, —1). Vertices outside the LI class
of the perfect tiling are marked by dots. Step (2) (lips glued
together) is depicted in Ref. 14.
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FIG. 2. 72' disclination in a Penrose pattern. (a) Step (1) of the Volterra process. Vertices outside the LI class are marked. (b)
The same disclination after closure of the sector by angular distortion.

cess is performed. Simultaneously, the strip S „is bent
such that it interpolates between the plane strips S-„(0)
and S „~0~ b according to the spatial dependence of 7.
Figure 1 represents the first step of the generalized Vol-
terra process. Removal of matter in Z alone would not
be su%cient to make the lips match. An additional rear-
rangement of the tiles is necessary, which naturally
occurs if we bend the strip.

Before the identification of the two lips (characterized
by {r,0[), we have to change y into {l,r '

y
—

yJ y
=r 'y between 8=0' and 8=(5 —r) x72'. A simple
choice of y(9) for a 72' disclination is the following:

y; (0) = (8/ —, ir) [y;+, (0) —
y; (0)j + y; (0);

i =0, . . . , 4.

As in the case of the dislocation, we carry out step (1)
of a generalized Volterra process by changing from the
active to the passive viewpoint: From the unshifted lat-
tice we remove a sector, and we use a curved strip
5 „&a&. The resulting pattern [Fig. 2(a)] displays the
rearrangement of tiles without distortions. In Fig. 2(b)
the sector has been closed according to step (2).

3. Discli nation -anti dI.sclination pair. —The topologi-
cal classification proves ' that a disclination-
antidisclination pair, separated by the projection of a lat-
tice vector t on PT, corresponds to a dislocation of
Burgers vector b=(r —1)t E T*. The dislocation with
b=(0, 0, 3, —3,0) shown in Fig. 3, is equivalent to a
72 -disc1ination dipole. The cores are separated by
t=(0,0, —3,0,0).

Topological defects in quasiperiodic patterns are ac-
companied by local neighborhoods of tiles (in the figures
marked by dots), which do not belong to the LI class of
the perfect pattern. These exceptional neighborhoods
are denoted phasonlike defects or mistakes. ' Phasons
are new elementary excitations, which in incommensu-
rate structures appear in addition to phonons.

Mistakes are a consequence of the special order-

parameter space: A loop in V corresponds to many
diAerent patterns. In the defected state several perfect
patterns are combined with the phasonlike defects serv-

ing as "adapter tiles. "
Zine singularities in icosahedral quasicrystals. —

When use the method of projection from a six-
dimensional hypercubic lattice onto a three-dimensional
tiling plane, all patterns belong to the same LI class. '

Therefore for the translational part of the unbroken sym-
metry group G all translations in six-dimensional space
are permitted. The rotational part of G must leave the
tiling space invariant; hence G = {SO(3)T SSO(3)&l

AR . The symmetry group of a pattern is

H=G Q {1,7j {0(6)AZ I {i,yI

= {I,y[{a(5)AZ'J {I,y[

FIG. 3. Equivalence between a dislocation of Burgers vector
b-(0, 0, 3, —3,0) and a 72'-disclination dipole. The two cores
are marked (8 antidisclination, the three points have to be
identified; D disclination).
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where 0 (6) denotes the six-dimensional hyperoctahedral
group and A(5) the icosahedral group. '6 The funda-
mental group of the order-parameter space G/H is
ni(G/H) =f1,y'}[A(5)AZ j(1,7j '. A(5) denotes the
lift of the icosahedral group into SU(2). ' The funda-
mental group classifies dislocation and disclination lines.
The Volterra process proceeds as in the two-dimensional
case.
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