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Correlation of Magnetic Fluctuations and Edge Transport in the Doublet III Tokamak
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A clear correlation between incoherent magnetic fluctuations and transport in the outer region of the
plasma was observed in a set of Doublet III beam-heated discharges which experienced repetitive transi-
tions between a poor-confinement phase and an improved-confinement phase. The fluctuations and as-
sociated transport are consistent with a model based on an assembly of saturated microtearing modes.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.30.—q

Observations of improved energy confinement ("H
mode" discharges) in tokamaks' suggest that edge
confinement plays a critical role in the determination of
global energy confinement, i.e. , longer edge confinement
leads to longer core confinement. Plausible theoretical
models have been advanced to explain this relation-
ship, and acceptance of this viewpoint shifts the prob-
lem of confining a fusion plasma to one of understanding
and improving the confinement at the plasma edge.

To this end, this Letter reports observations from the
Doublet III tokamak wherein the level of magnetic tur-
bulence is directly correlated with (and thus may be re-
sponsible for) edge transport. The turbulence is low fre-
quency (5-50 kHz) and broadband, and increases with

P~, as previously observed on the ISX-B tokamak. The
correlation here is established more directly than in pre-
vious experiments ' because the observed incoherent
magnetic-fluctuation amplitude abruptly changes simul-
taneously with transitions into and out of the H mode. A
model based on microtearing modes will be shown to be
consistent with the observed turbulence with regard to
the spatial amplitude dependence, frequencies, magni-
tude of heat transport, and the existence of a tempera-
ture threshold to the H mode as observed on the ASDEX
tokamak. '

Magnetic fluctuations are detected by two arrays (po-
loidal and toroidal) of Mirnov coils that sense the po-
loidal magnetic field. They are located just inside the
Doublet III vacuum vessel [see Fig. 1(a)] which acts as a
perfectly conducting shell in the frequency range of in-
terest (f) 2 kHz). Each coil is inside a stainless-steel
shield that excludes electrostatic pickup while reducing
electromagnetic signals by only 10% at 25 kHz. The
highest measurable frequency, 50 kHz, is determined by
the maximum data-acquisition rate.

In Doublet III (BT & 2.4 T, Iz & 1 MA, R =1.44 m,
a =0.4 m), as with other tokamaks, it is found that as
neutral-beam heating power is increased in discharges
defined by a material limiter, the global energy-
confinement time rE decreases (L mode). '" If, howev-

er, the plasma is well diverted, the confinement deteri-
oration is more modest, and zE is typically a factor of 2
higher than limiter discharges at high beam-heating lev-
els. In the Doublet III poloidal divertor configuration,

neutral-particle sources are localized in the divertor re-
gion, whereas a limited discharge exhibits larger sources,
mainly near the limiter. Marginally diverted discharges
are intermediate, with recycling at both limiter and
divertor regions, and are observed to undergo repetitive
transitions between an L phase and an H phase' (the
average zE is not as long as that of fully diverted
discharges, but is better than that of limiter discharges).
The transitions in marginally diverted discharges provide
an ideal situation for the study of the differences be-
tween L- and H-mode transport.

Figure 1(a) shows an example of the outer magnetic-
flux surfaces of a marginally diverted discharge (8,
&11 T, q=26, P =075, b/a=135, a=039 m).
Figures 1(b)-1(d) show successive time expansions of
relevant diagnostic signals from this discharge. The D
light intensity indicates the relative amount of particle
recycling and hence edge particle transport since exter-
nal sources (e.g. , gas puff, chamber wall) are slowly
varying in time. In Fig. 1(c), there are two intervals of
low D, intensity, which is the signature of H-mode con-
finement. (The D, intensity from the divertor also de-
creases, and so this drop is more than just a shift in recy-
cling location. ) Observations on the ASDEX and the
PDX tokamak have established that global energy con-
finement improves when the edge-particle transport
drops. ' An improvement in global energy confinement
can also be inferred from the soft-x-ray traces in Fig. 1:
The signal labeled SXR-11 looks just outside the q =1
radius and so it rises at the sawtooth crash and then de-
cays. During H-phase time intervals [e.g. , from times t2
to t3 in Fig. 1(c) and 1(d)], the decay rate immediately
becomes very slow, indicating the reduction of heat
transport in this internal region.

Figure 1(d) also shows that the Mirnov-probe signal
amplitude abruptly decreases at the onset of the H phase
(time t2) and increases again at the transition back to
the L phase (time t3). The synchronous change of
magnetic-fluctuation amplitude with the change in edge
confinement (e.g. , D, signal) establishes a clear correla-
tion between these quantities.

Observed properties of the magnetic fluctuations are
shown in Fig. 2. Frequency spectra of the Mirnov-probe
signal (integrated to give b), Fig. 2(a), are incoherent
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enhanced electron thermal transport are expected. ' (It
should be noted that overlapped islands do not directly
predict enhanced particle transport. ) The effective
thermal diffusivity can be estimated from (~ b ~/BT)
x v, qR (from Rechester and Rosenbluth'6), where v, is
the electron thermal velocity, to be 2 m /sec for T, =200
eV, comparable to transport-code estimates of the edge
thermal diffusivity. The hypothesis of overlapped
multiple-island layers is also qualitatively consistent with
the observed incoherent nature of detected magnetic
signals.

Returning to the deterioration of confinement with in-

creased heating power, the influence of edge magnetic
turbulence on global confinement depends on the addi-
tional processes linking edge and global energy trans-
port. This makes quantitative predictions of scaling
difficult, although one would expect that increasing tur-
bulence would result in progressively enhanced transport
and deteriorating energy confinement. A regression
analysis of beam-heated tokamak confinement data has
shown that zE~P&,&

Ip' (L-mode scaling), where P«& is
the total input power and I~ is the plasma current. "
This can be reexpressed in terms of the poloidal beta as

zE~P~ ', with no dependence on the toroidal field BT.
Figure 3(a) demonstrates that the normalized fluctua-
tion amplitude increses with P~ as zE decreases. ' The
data in the figure are restricted to circular discharges
limited on the inside limiter so that a~/a, is fixed at 1.11
to eliminate any effect from the strong dependence of the
probe signal on probe-plasma distance, except for out-
ward flux surface shifts with increasing Pz that would
tend to reduce the inner-wall probe signal. Similarly,
only data with fixed qt (=3.1) are considered to avoid

any effect of q profile on mode location. The few data
meeting these criteria with P~ fixed show no dependence
of b/BT or zE on BT in Fig. 3(b). Thus, the parametric
variation of the observed fluctuation amplitude is quali-
tatively consistent with L-mode scaling.

In conclusion, low-frequency incoherent magnetic-
fluctuation amplitudes are observed to change synchro-
nously with edge transport in transitions between H and
L confinement phases. The fluctuations exhibit the in-

coherence, frequency range, and radial-amplitude de-
crease expected of an assembly of microtearing modes
with m ~ 8. Microtearing modes are predicted to be

stable above a threshold temperature in agreement with
ASDEX observations. Measured fluctuation amplitudes
indicate island structures of size sufficient to enhance
edge transport. To the extent that edge transport influ-
ences global confinement, the observed magnetic tur-
bulence is a viable candidate for the origin of L-mode
scaling, as demonstrated by the increase of fluctuation
amplitudes with increasing P~.
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