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Nonanalyticities in the generalized dimensions of multifractal sets of physical interest are interpreted

as phase transitions. The problem is mapped onto thermodynamics of one-dimensional spin models. The

spin Hamiltonians are explicitly constructed and their phase transitions discussed. This mapping can

provide insight in both directions.

PACS numbers: 05.70.—a

Multifractals are fractal sets which are not necessarily
self-similar. Such sets appear in a variety of nonlinear
physical phenomena like turbulence, ' chaotic dynamical
systems, fractal growth processes, etc. , and have been
also termed "fractal measures. " To see the essential
property which makes these sets nontrivial consider a set
that can be covered at the nth level of construction by a"
balls, where (k —1)"(a"(k", with k integer. Assign
to each ball an address (el, . . . , e„) where e; can take on
k values. Denote the radius of each ball by /(et, . . . , e„).
The crucial quantity that determines the properties of
the set is the scaling function a, which is a daughter-
to-mother ratio obtained in one refinement of the cover-
age:

Exactly self-similar sets have the property that o(e„+t,
. . . , et) =tT(e„+1). At each stage of the construction one
splits the coverage as in the first stage. A spurt of
theoretical (and some experimental ) activity started re-
cently following the realization that many sets of interest
are not self-similar, and in principle they have the prop-
erty that ct(e„+1, . . . , e&) depends on the whole history
of the construction.

It has been proposed that such sets can be usefully
characterized by an infinite spectrum of generalized di-
mensions. Defining the measure of a ball with address
(el, . . . , e„) by p(et, . . . , e„), one introduces the par-

titian function I (q, z) =g, , p~(e, , . . . , e„)//'( e, ,

. . . , s„). Next one argues that in the limit n I the
condition I (q, z) =1 singles out a quantity z=z(q)
=(q —1)D~, where D~ are the generalized dimensions. 6

Appropriate Legendre transforms lead to the spectrum
of singularities which was denoted f(a) in Ref. 7.

The aim of this Letter is to point out and discuss the
fact that some sets of physical interest have a nonanalyt-
ic dependence of Dq on p. Moreover, this phenomenon
has a direct analogy to the phenomenon of phase transi-
tions in condensed-matter physics. The fact that such a
phenomenon exists was discovered first by Cvitanovic in

the context of the mode-locking structure of the circle
map, and later mentioned by Bohr and Rand, Badii
and Politi, and Grassberger. Here we put the analogy
on a firm basis making full use of the recently developed
thermodynamic formalism of multifractals. ' "

A quick path to this thermodynamic formalism' " is

opened by considering the special partitions that obey
the conditions p (e~, . . . , e„)=const =a ". Inserting
this in the partition function and using the condition
I (q, z) = I leads to the relation

~/(e e )~
&n

where now q(z) rather than z(q) becomes the focus of
analysis. We can now map the problem onto statistical
mechanics of an n-dimensional spin system by dividing
a "+' t ' by a" '. With use of Eq. (2) we find (after
adding summations on e„„p„;,. . . , eq»~„which are com-
pensated by Kronecker Ps)

&n

(3)

Defining the transfer matrix

we see that a ' is an eigenvalue of T. We thus have' a mapping on the thermodynamics and statistical mechanics of
spin systems; —z serves the role of the inverse temperature p; —q(z)ln(a) serves as the free energy F(p). The ther-
modynamic system is a one-dimensional string of spin with a range of interaction that depends on the memory in
cr(e„. . . , et). The number of spin states is k.

Before turning to the issue of phase transitions, we discuss the calculation of the Hamiltonian of the 1D spin system.
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At the nth level of the construction we have the transfer matrix T with elements o(s„, . . . , e1) from which we can ex-
tract interactions involving n spins. We ~rite E(s~, . . . , s„)=ln! a.(c„, . . . , a1)!, and

N n —] Tl 2—E(e), . . . , c„)= gh;' s, + g k; as+i+ Qg; se;+z+ . . +m "ei (4)

At this point and in the rest of this Letter we shall think
of binary c's which take on values 1, and positive
coefficients in (4) indicate ferromagnetic interactions.
Naturally, raw calculations on given fractal sets yield in-
teractions which are not translationally invariant, (i.e. ,
g;( )~g/( 1 for i&j for example). However, we always
use the freedom to seek translationally invariant interac-
tions which lead to the same total Hamiltonian. This is
obtained simply by our summing up all coeScients of the
same type. The resulting translationally invariant in-

are the interactions that we quote below. The fact that
the total Hamiltonian is the same can be seen easily. '

The two examples of strange sets that we consider
here are (i) the Julia set ' of the quadratic map z

'

=g(z) =z +0.25 with z complex and (ii) the invariant
measure of the map x'=f(x) =4x(1 —x), x C [0, 1].
The second example is simpler since we have an explicit
form for the invariant measure, p(x) =n '[x(1
—x)] '/ . By the use of this, one can calculate explicit-
ly Dq and find

1 forq &2,
q/[2(q —1)] for q & 2. (5)

We thus have nonanalyticity at q =2. The scaling func-
tion (1) can be obtained easily with the help of symbolic
dynamics. Defining Z(x) to be —

1 for x & —,
' and +1

for x & —,
' we seek intervals l(si, . . . , a„) such that

Z(x ) =s1, E(f(x ) ) = s'z, . . . , Z(f" ' (x) ) =e„, for all x
in l(si, . . . , s„). The measure of each such interval is
precisely 2 ". The scaling function is then (1), and the
result cr(s„, . . . , s1) for n =12 is shown in Fig. 1. We
note in passing that to our best knowledge this is the first
scaling function obtained for a fully chaotic (nonhyper-
bolic) system, and that it converges very rapidly. We see
that most of the values of o. are clustered around —,', but
there are two boxes, namely 1( —1, —1, —1, . . . ) and
l(1, 1, 1, . . . ) that contribute a value 4 to the scaling
function. For r positive and large these boxes dominate
Eq. (2) and we have 2"q ') ——,

' "' from which q =2z.
For r negative the large boxes dominate and Eq. (2)
reads 2 "q ' —2"

&

"' or q = 1+ r. The transition is at
r=1 or q =2 in agreement with (5). We note that in

spin language the "states" ( —1, —1, —1, . . . ) and
(1, 1, 1, . . . ) are the "ground states" which are fully or-
dered. The only remaining puzzle is why the transition
occurs at positive r, which in light of the identification

—P indicates negative temperatures. We return to
this point later.

The Julia-set example is much more subtle. This set
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FIG. 1. Scaling function for the invariant measure of the
map x '=4x(1 —x). The abscissa is the number x =g„"=,[(1
+ sk)/2]2 "/2"+'. Notice that for x =0, 1, cr= —,

' .

! can be obtained recursively from the preimages of the
unstable fixed point which for g(z) =z'+0.25 is exactly
at z = —,

' . ! g'(z)! is therefore unity and the set is not
hyperbolic. This is the reason for the phase transition
(which does not occur in the hyperbolic Julia set of
z +c for —0.75 & c & 0.25). The partition is again ob-
tained with the help of symbolic dynamics. In the nth
generation we consider" the n symbols ~i, . . . , r„ob-
tained from writing z (s1, . . . , z„)= ~ [z '(

s2, . . . , c„)
—

—,
' ] '/, where e~ = —

1 when the positive branch is used
and ~i = 1 for a negative branch. Writing then
r =gk, [(1+sk )/2] 2 " we denote z (s~, . . . , e„) by
z(r). The boxes, each of which has a measure 2 ", are
defined by l(s1, . . . , e„)=!z(r+ —,

' n) —z(r)! and the
scaling function follows. '' The set as obtained at gen-
eration 12 is shown in Fig. 2(a) including the
identification of l( —1, —1, —1, . . . ). The scaling func-
tion for the same generation 12 is shown in Fig. 2(b).
One of the problems is that the scaling functions con-
verge excruciatingly slowly with the generations, but we
expect that in the limit it reaches the value 1 for X =0, 1

and the value 0 for % = —,
' .

As a result of the fact that ! g (z)! =1, the boxes
l( —1, —1, —1, . . . ) and l(1, 1, 1, 1, . . . ) decrease in size
very slowly as the generation increases. In fact their size
decreases like 1/n rather than exponentially, as almost
all the other boxes do. Evidently for ~ negative and large
these boxes dominate, resulting in q going to zero like
(inn)/n. We thus expect q(r —~) to be zero asymp-
totically. We also remember that q =0 for ~= D()
where Do is the Hausdorff dimension [remember that
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FIG. 3. Plot of q(r) vs z as obtained from the approximate
data of 14 generations for the Julia set of z'=z +0.25. No-
tice that q(r) is not yet zero for r & Do
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FIG. 2. (a) Scaling function for the Julia set as obtained for
generation 12 from the map z'=z +0.25. The abscissa is the
same as in Fig. 1. We expect that asymptotically a(0) =o(1)
=I, and cr( —,

' ) =0. (b) The Julia set of z'=zz+0. 25 at gen-
eration 12. l( —I, —I, —1, , . . . ) and l(1, 1, 1, . . . ) are denot-
ed.

r(q) =(q —1)D~J. Since from (2) it is clear that q is

monotonic in r we conclude that q is zero for all
D p. On the other hand we know from the

definition of the HausdorA' dimension that for ~& —Dp
the right-hand side of Eq. (3) goes to infinity. Thus q(r)
cannot be zero for t& Dp, and we conclude that at
r = Dp the transition occurs. Figure 3 shows q(r) as
obtained numerically for generation n =14. The transi-
tion is clearly seen, but q(r) is still nonzero for z & —Do
because of the slow convergencelike (inn)/n.

The analytic properties near r= —Dp are a delicate
business. To argue that we have a true phase transition
we turn now to the spin model. As explained above we
evaluate the spin interactions from the scaling function.
Because of the symmetry of the scaling function about
X=

2 there are no odd-spin interactions, i.e., no "mag-
netic field" and no three-spin interactions, etc. Next we
examined the two-spin interactions for nearest neighbors,
next-nearest neighbors, etc. , up to a distance of 10 sites.
These are all ferromagnetic, but are decreasing exponen-
tially with the distance. As is well known one does not
have a phase transition with only short-range two-spin
interactions. ' We have, however, multispin interactions
as well, and they are all ferromagnetic. The situation is

very close to the "droplet model" of Fisher, ' and we use
the results of that model to discuss the phase transition.

As argued by Fisher one can consider the energy of a
"cluster" of m spins that all point, say, up. (In Fisher's
model one thinks really about a liquid droplet, but the
transition of spin language is immediate). One then
writes the energy of the cluster as

E = —mp+W, m

p is the "bulk" contribution to the energy, whereas W
is the "surface" contribution. Fisher showed that if
there are multispin interactions, then even though the
two-spin interactions are short ranged, one can expect a
transition at a finite temperature if W /lnm const.
Moreover, this constant limit is kT, or P, . With the
use of the computed Hamiltonian we calculated the ener-
gies of clusters of 2-12 spins, and found that Eq. (6) fits
the numbers very well for m ~ 4, and a fit gives a value
of W /lnm= —1.44. We thus expect a transition at
r= —0.7. In view of the fact that we use data from gen-
eration 12 to calculate the Hamiltonian, we find the
agreement with ~= —Dp= —1.1 to be reasonable. A
similar test with the Julia set of z +O. l resulted in a fit
where W /lnm 0. We thus conclude that at "low
temperature", (r & —Do) the system is in a fully or-
dered state (1,1, 1, 1, . . . ) or ( —I, —1, —1, . . . )
whereas at r & —Dp it is disordered. On the basis of
this analysis, we feel safe to conjecture that there is a
true phase transition for this set, occurring when
equals the HausdorA dimension.

A similar analysis has been performed on example (ii).
Again, as a result of the symmetry of the scaling func-
tion, only even interactions appear. A major diAerence
appears, however, when we compute the two-spin in-
teractions of this problem. These are essentially in-
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dependent of the distance. Moreover they are all antifer-
romagneticI Thus a state 1, —1, 1, —1, . . . is very frus-
trated and in fact cannot serve as a ground state. We
thus understand why the transition appears at negative
temperatures. Formally if we change P —P and make
antiferromagnetic interaction ferromagnetic, the prob-
lem remains invariant. The states (1, 1, 1, . . . ) and

( —1, —1, —I, . . . ) become now ground states. Evident-

ly, with two-spin interactions alone the system would

have remained ordered at all (negative) temperatures.
One has to examine carefully the multispin interactions
and this is already beyond the scope of this Letter.
These considerations, in addition to more details on ex-
ample (i) and other cases, will appear elsewhere.

In summary, we have shown that an interesting
phenomenon pertaining to multifractal sets can be

mapped onto phase transitions of spin models, yielding
valuable insight into the nature of such sets. We stress
that the mapping can be used in the other direction as
well, to gain insight on condensed-matter phenomena of
interest.
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