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The transition to turbulence via spatiotemporal intermittency observed in a partial differential equa-
tion displays statistical features typical of critical phenomena. An analogy with directed percolation is

drawn.
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The study of low-dimensional dissipative dynamical
systems has provided a reasonable understanding of the
process of transition to temporal chaos in strongly con-
fined systems. The situation is much less advanced for
weakly confined systems where chaos has both a spatial
and temporal meaning as shown, for example, in convec-
tion. As is well known, these systems involve a large
number of almost degenerate degrees of freedom. A
conceptually simple way to increase this number consists
of coupling identical dynamical systems. Choosing a
coupling force proportional to the difference of state
variables between neighbors, then at the continuous lim-
it, one obtains models of the so-called reaction-diffusion
type for which chaos should already present nontrivial
spatiotemporal properties.! Staying at the discrete level,
which is well in the spirit of the Poincaré mapping reduc-
tion procedure, arrays of coupled identical mappings
have been studied.? However, it is not yet completely
clear how far they can account for the continuous-space,
continuous-time systems which they are supposed to
model, and whether the kind of linear (quite passive)
coupling used is a good (generic) representative of all
spatial couplings and most especially of the nonlinear
convective term essential to fluid dynamics. Thus, we
were strongly motivated in studying a partial differential
equation displaying a convective-type nonlinear term,
steady cellular solutions as in convection, for example,
and a transition to spatiotemporal chaos.

Here we consider the variant of the Swift-Hohenberg
model of convection® currently named “model b” and
studied mostly up to now from the point of view of wave-
length selection close to the threshold.* This one-
dimensional model reads

W =eW — (32 +q2)°W — W, W, (1

where € is the control parameter. The trivial solution
W =0 bifurcates at e =0 towards a steady periodic solu-
tion. Contrary to the original model which derives from
a potential and, as such, has only steady solutions, model
b can also have periodic, quasiperiodic, and chaotic solu-
tions for e < 1. =1 is a limiting value for which, up to
a rescaling of W, x, and ¢, Eq. (1) is equivalent to the
Kuramoto-Sivashinsky (KS) equation® in which the

term (1 — &)W can be understood as an additional damp-
ing ny® [n=+% -8l

Oyt ny+ 02y + 9w+ 2yd, ¥ =0. (2)

Mathematical properties of the KS equation (n=0)
have been studied thoroughly.” When n=0, a single
control parameter remains, the length L of the interval
at which boundary conditions are imposed to the func-
tion. It can be reduced to a low-dimensional effective
dynamical system (inertial manifold’) the dimension of
which grows linearly with L.® But there exists also win-
dows in L where steady cellular solutions are stable’ and
which can be reached quite suddenly after extremely
long transients for L not too large.” This last
phenomenon seems more dramatic with periodic bound-
ary conditions than with so-called ‘rigid boundary
conditions,”%?

w(0) =y(L) =0, d,y(0)=09,y(L)=0, (3)

but bulk statistical properties of turbulent solutions at
the limit of very large L do not seem sensitive to it.

Back to the damped KS equation, between the “‘con-
vective threshold” (now at n =% for L infinite) and the
KS limit (p=0) enough space is left for a transition
from steady rolls to ““phase turbulence” as soon as L is
large enough. At given L, this transition is controlled by
n. We defer a complete report on the bifurcation dia-
gram in the (L,n) plane and restrict ourselves to the
large-L limit where confinement effects are weak, here
L >100. At such values, solutions to the pure KS equa-
tion (7=0) are strongly chaotic (chaos first appears for
L=15). Moreover, the transition is rather reminiscent
of crises typical of low-dimensional dynamical systems
involving a small number of nonlinear steady solutions,
some regular and the others with phase defects (strange
steady states of Ref. 9¢). Intermittency is not absent but
has only a temporal meaning, either linked to these crises
or to the fact that weakly unstable well-defined states
can attract temporarily the system in a given region of
the inertial manifold. The transition to weak turbulence
looks quite different for the damped KS equation at
large L. In the transition region, weak turbulence takes
the form of a fluctuating mixture of regular and tur-
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bulent domains with well-defined boundaries. Such a re-
gime is often called “‘spatiotemporal intermittency.”?2
The transition is continuous in the sense that (i) tur-
bulent domains slowly invade the system above some
threshold and slowly recede below it and (ii) global sta-
tistical properties evolve gently in this parameter range.

Simulations on model (3) with rigid boundary condi-
tions (4) have been performed with the use of a standard
finite-difference numerical code, second order in space
and time (Crank-Nicolson Adams-Bashford). Care has
been taken to vary the spatiotemporal resolution in order
to check the reliability of the phenomena reported. We
used typically 6x =0.25 (17 points per roll) and 6 =0.1.
Values of L varied from 200 to 3200. L =800 seems to
be the lower bound above which the transition to chaos
takes place through spatiotemporal intermittency.

At moderate aspect ratio (L =100), a subcritical Hopf
bifurcation towards an oscillatory state takes place fol-
lowed by a supercritical transition to a quasiperiodic
state. %2 Time series used to detect these regimes as well
as other tools popularized by the study of dissipative
dynamical systems (Lyapunov exponents...) have
turned out to be of little help for the elucidation of these
spatial features. On the other hand, simply plotting the
zeros or the extrema of the field variable already reveals
them.!%® The origin of the first frequency can be traced
back to an instability involving the basic wave vector
selected by boundary effects, its + subharmonic (spatial
period doubling) and their harmonics (3 and 2 in par-
ticular). The second frequency is related to the regular
propagation of a phase disturbance. The propagation ve-
locity v has been found roughly independent of L for
L > 100 and in the narrow range of n values concerned
(v =0.8). No detailed theoretical account of these phe-
nomena has been given up to now, but it is likely that
some amplitude-equation formalism would be adapted,'!
provided that end-effect perturbations be included.

In the range 100 <L <800, the transition to tur-
bulence takes place through a loss of spatial coherence of
the propagating waves at the origin of quasiperiodicity. '°
Two processes have been observed to occur, a nucleation
of defects, essentially space-time dislocations®® in the
bulk, and a damping of the waves as they penetrate in
regular domains referred to as ‘‘coherent structures.”
We have also observed a multiplicity of asymptotic
states, some of which were regular, quasiperiodic, but
with weaker and weaker oscillations in the middle, subse-
quent regimes being extremely weakly chaotic with
slightly irregular oscillations confined to boundary lay-
ers. Others already presented a precursor of spatiotem-
poral intermittency to be described below. This multipli-
city seemed related to the persistence of sizable end ef-
fects, which become less and less pronounced as L in-
creases.

At large aspect ratio, a further compression of the spa-
tiotemporal information is crucially needed: The under-

lying periodicity of the roll structure must be rubbed out
in order to focus the attention on the distortions. It turns
out that in steady regions (called laminar in the present
context) the local peak-to-peak amplitude of the rolls is
larger than in turbulent regions. Thus, setting a cutoff,
one can easily identify turbulent and laminar domains.
We have checked that the qualitative features of the pic-
ture obtained in that way were insensitive to the precise
value of the cutoff. Figure 1 displays such an all-or-
nothing representation for L =1600 and 1n=0.080 on a
time interval of length 5000. Dark regions are laminar
while turbulent patches are left blank. Propagating
coherent oscillations particularly visible in one boundary
layer but also decorating the frontier between turbulent
and laminar domains come and complicate slightly the
picture.

Figure 1 can be analyzed as a juxtaposition of very

FIG. 1. Solution of model (3) for L =1600 and 1 =0.080.
Typical example of the death of a spatiotemporally intermit-
tent domain, receding at a well-defined velocity, close to the
threshold for sustained intermittency (time is running up-
wards).
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large laminar domains close to the boundaries and a
“mixed state” made of interwoven turbulent and laminar
domains of smaller size. Large laminar domains with
typical sizes of the order of L correspond to spatially
truncated asymptotic states of nearly steady roll patterns
seen closer to the convective threshold. The boundary of
the mixed state is well defined and its velocity can be
measured. For L =1600 and  =0.080 the mixed state is
seen to recede regularly at a velocity ¥ =0.09. Around
n=0.078 the situation becomes quite confused, certain
initial conditions lead to a nearly steady sharing of the
system between laminar and mixed state, i.e., ¥ =0, oth-
ers to completely laminar or, on the contrary, completely
chaotic states, thus testifying for still sizable end effects.
For 1=0.070, no coherent structure at a scale of the or-
der of L can be found any longer; moreover, the mixed
state invades the system at a velocity ¥ =0.15 so that the
system is already deep in a new regime of sustained spa-
tiotemporal intermittency. Thus we can safely say that a
change of behavior takes place at about n=0.078 for
L =1600. In the range L =800-3200 the value of the
intermittency threshold seems roughly independent of
size effects. The invasion or recession velocity ¥ is much
smaller than the propagation velocity v or a phase distur-
bance which, as well as the underlying roll wavelength or
the attenuation length of oscillations in locally steady
rolls, plays the role of a microscopic parameter as op-
posed to the length of laminar or turbulent regions at
given 1.

The transition to turbulence via spatiotemporal inter-
mittency thus presents itself as a continuous process
much reminiscent of a second-order phase transition.
The study of the distribution of lengths of laminar
domains confirms the existence of a critical region. This
is clearly shown in Fig. 2 which displays the histograms
corresponding to L =1600 for n=0.078 and n=0.040.
They give the statistics, cumulated on a time interval of
20000, of the number of laminar domains with a given
length. At threshold, one gets a power-law behavior with
a characteristic exponent 7 of the order of 3.15, while far
from the threshold the decay is exponential with a
characteristic length £ of the order of 3.5. No power law
can be extracted for n=0.070, which suggests that the
system is operating at some crossover regime.

If one follows a suggestion of Pomeau,'? it is very
tempting to interpret the transition to turbulence via spa-
tiotemporal intermittency described above as a directed-
percolation process.'®> This analogy would account for
the existence of a well-defined threshold, scaling in the
critical region, the opening of the observation angle, etc.
The introduction of probabilities in a deterministic prob-
lem seems necessary to avoid a spurious sensitivity of the
coherence of chaotic states to the coherence of initial
conditions which characterizes deterministic automata.'*
In addition, this introduction would be some sort of short
circuit, allowing for the instability and subsequent sto-
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FIG. 2. Histograms of the lengths of laminar domains in the
mixed state (in units of the half of the most unstable wave-
length). (a) Close to the threshold (n=0.078), log-log plot,
algebraic decay with exponent 7=3.15 and (b) deep in the tur-
bulent regime (n=0.040), semilogarithmic plot, exponential
decay with a characteristic length £ =3.5.

chasticity of localized degrees of freedom,!> therefore
jumping directly over the intermediate step of discrete
space-time systems with deterministic mappings close to
some temporal intermittency threshold.? Regarding this
directed-percolation type of approach much remains to
be done. From an experimental point of view, a better
characterization of the possible critical behavior of the
front velocity and a statistics going beyond space coher-
ence and accounting also for time coherence are already
in progress, aiming at the determination of new critical
exponents. From a theoretical point of view, the main
challenge would be the understanding of the relation be-
tween the transfer of a dynamical information (instan-
taneous state of a given localized degree of freedom) and
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its translation as a topological information (part of a
laminar or turbulent domain), which, according to
Pomeau, could account for quantitative discrepancies
with the strictly probabilistic problem.

Another challenge is the determination of the degree
of universality of spatiotemporal intermittency displayed
by the model studied here. This behavior is obviously
connected to that observed in lattices of coupled map-
pings.2 A novel interpretation of the data obtained with
such models would be profitable, particularly with
respect to the current belief that only a small number of
degrees of freedom is involved, linked to the dynamics of
a small number of kinks or defects?® or more generally of
nonlinear eigenmodes on some low-dimensional mani-
fold,” a statistical-mechanics—type approach®® could
turn out to be more appropriate.

In any case, spatiotemporal intermittency is ubiquitous
in hydrodynamic turbulence. Phenomenological descrip-
tions of the transition process in pipe flows or boundary-
layer flows, etc.,'® seem sufficiently similar to that ob-
tained here to motivate a continued effort along the
direction of our current work.
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