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Complex Quasiperiodic and Chaotic States Observed in Thermally Induced
Oscillations of Gas Columns
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Highly nonlinear phenomena are observed in Taconis oscillations, which are spontaneous oscillations
of gas columns thermally induced in a tube with steep temperature gradients. Near the overlapped re-

gion and the intersection of the stability curves for two difTerent modes with incommensurate frequen-

cies, we find that both modes can be excited simultaneously and competition between them leads to com-

plex quasiperiodic and chaotic states. Experimental data are analyzed by use of recent methods from
the theory of nonlinear dynamical systems.

PACS numbers: 47.25.Ae, 05.45.+b, 05.70.Ln, 43.90.+v

Spontaneous acoustic oscillations of gas columns can
be generated in a tube with steep temperature gradients
without external mechanical force. Most experimenters
in cryogenics often observe this type of oscillations when

a tube closed at the top end is inserted into liquid heli-

um, and call them "Taconis oscillations. " This phenom-
enon is associated with thermally driven acoustic oscilla-
tions as well as the Sondhauss tube and the Rijke tube';
namely, some heat is converted to work under proper
conditions and this leads to self-sustained acoustic oscil-
lations. In recent years thermoacoustics has received
considerable interest in connection with related fields of
application. As fundamental studies, however, only the
stability curves have been theoretically and experimen-
tally determined in the small-amplitude limit. This pa-
per is the first report on nonlinear phenomena observed
in this new acoustic system, where competition between
two diflerent resonance modes simultaneously induced in

large-amplitude regimes gives rise to complex quasi-
periodic and chaotic states.

The experimental system is schematically shown in

Fig. 1. A step-functional temperature distribution along
the tube closed at both ends is symmetrically established

by an external method. A gas column in the tube con-
sists of three parts; homogeneous temperatures (warm,
TH, and cold, Tc) and temperature-jump regions. The
cavities used in these experiments were stainless-steel
tubes of inner radii r =1.2, 2.2, and 3.7 mm, wall thick-
ness 0.3 mm, and whole tube lengths 2. 1 and 2.9 m. The
length AL was less than 4% of L. The warm part was
maintained at 296 K and temperatures at the cold part,
stretched as U shaped at X=O, could be varied continu-
ously from 4.2 to 45 K by the method of continuous flow

of cold helium gas. The time dependence of the pres-
sure and the mean pressure were measured by two small
pressure transducers attached at the two closed ends
with excellent linearity over a wide range. The signal
voltage V(t) was digitized by a fast twelve-bit analog-
to-digital converter. Calculation of power spectra via the
fast-Fourier-transform algorithm and plotting of trajec-
tories in phase space were performed from 8x10 or

where Y is the ratio of the tube inner radius to thickness
6—(a/co) 'i of the thermal boundary layer formed on
the tube wall (a is the thermal diA'usivity of gas, and co is

the angular frequency) and subscripts H and C show the
warm and the cold, respectively. In experimental works
it was verified that the stability curves could be unified

by Eq. (1) for the fundamental. In order to draw up the
phase diagrams of the higher frequency modes in addi-
tion to the fundamental we adopt the following numbers
independent of the frequency instead of Eq. (1):

R = Yck ' and TH/Tc =(Yc/YH) (2)

where the dimensionless frequency X is defined by col/ac.

(ac is the adiabatic sound velocity at the cold part) and

P is 0.647 for helium gas.
The experimental phase diagram is shown in Fig. 2,

where the working gas is helium and the ratio between
lengths of warm and cold parts, (L —I)/l, is 0.3. The
neutral points were explored by gradual variation of R
through the mean density of the gas. When the temper-

C

=X

FIG. 1. Mean temperature distribution along the tube

closed at both ends.

16& 10 points sampled by suitable times.
The stability curve and the frequency (f&) for the

lowest mode were given by Rott's theory where the tem-
perature had a discontinuity at X= ~ l and eflects of
both thermal conductivity and viscosity of the gas were
taken into account. The important dimensionless num-

bers characterizing the boundary of the stability-
instability in this system are given by

Yc =r(co/ac) ' and YH =r(co/aH) '
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FIG. 4. Time records of the pressure (5.5 x 10 Pa/V) and corresponding power spectra. (a) R =25.2, cockscomb pattern with
sharp peaks above the onset of noise; (b) R =32.2, a quasiperiodic state; (c) R =35.8, a periodic state of the fundamental (f&).

pressure nodes exist at the cold part. In a small region
of R (the first shaded area in Fig. 2), the second fre-
quency mode begins to grow, and both modes are simul-
taneously induced. Interaction between them leads to a
quasiperiodic state [Fig. 3(b)] slowly modulated at low
frequency where the spectrum consists of the sharp peaks
of f2, f3, and mixing components of their linear com-
bination. Phase locking of two frequencies and chaotic
behavior were not found in this region, where the varia-
tion of the frequency ratio f2/f3 (=0.667) is less than
0.3%. The quasiperiodic motion turns into the periodic
state of f2 for further increase of control parameter.
This sequence depends on the history of the system and
exhibits hysteresis. A quasiperiodicity does not occur for
gradual decreasing control parameter but the transition
from the second mode of the third mode occurs at a posi-
tion close to the extrapolated line of the stability curve of
the second mode. A further increase of R results in one
period doubling [Fig. 3(c)] but no cascade of period-
doubling bifurcation occurs. The system returns to the
periodic motion of f2 again.

In the process of the transition from the second mode
to the fundamental, competition between them takes
place in the second shaded region in Fig. 2. The typical
examples of waveforms and power spectra are shown in

Fig. 4. The amplitude modulated as "cockscomb" pat-
terns, which are characterized by a sudden jump in arn-
plitude, appears at R =25.2 [Fig. 4(a)]. The spectrum
shows the increase of a visible noise floor in addition to

higher-order mixing components due to strongly coupled
nonlinear oscillations. Near the onset of chaos such
cockscomb patterns have been also observed in the other
acoustic system, Faraday experiment. A further in-
crease of R leads to smooth modulation and decrease of
the number of the peak spectrum [Fig. 4(b)]. Mode
competition disappears and the system is absorbed into
the periodic motion of f~ near R =35 [Fig. 4(c)]. The
rotation number, f~/f &, increases gradually without a
perceptible phase-locked state. The frequency parame-
ters k~ (=to~i/ac) and X2 (=cu21/ac) asymptotically
tend to tr/2 and tr, respectively, as the system approaches
the left-hand branch (Fig. 5). This behavior shows that
as the viscous boundary-layer thickness becomes thicker
in the warm part, the positions of the temperature jump
act almost like those at the closed end.

We analyzed experimental data using the theory of
nonlinear dynamical systems. Phase portraits of dimen-
sion m can be constructed from the vectors [V(t;), V(t;
+r), . . . , V(t;+(m —1)r)] for the digital time series
V(t;) of signal voltage, where the delay time r is an arbi-
trary fixed value. Two-dimensional projections of
three-dimensional phase portraits constructed by plotting
of the voltages V(t;), V(t;+ z), and V(t;+2r) are
presented in the upper row in Fig. 6, where r is chosen to
be about 4 of the period of the intrinsic oscillation. The
lower row in Fig. 6 shows Poincare sections given by the
intersection of trajectories in three-dimensional phase
portraits with the plane passing through the dashed line
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FIG. 5. Dimensionless frequency parameter X( col/ac) of
two modes (f~ and f2) in the quasiperiodic regime.

FIG. 6. Upper row, two-dimensional phase portraits; lower

row, Poincare sections. (a) and (b) correspond to Figs. 3(b)
and 4(a), respectively, and (c) is a chaotic state at R =19.6.

in the upper part of Fig. 6. For the quasiperiodic state in

Fig. 3(b) the trajectories in the phase space cover the
whole torus, and the Poincare section is a well-defined
closed loop [Fig. 6(a)]. The phase portrait correspond-
ing to the cockscomb pattern in Fig. 4(a) shows a state
just at the onset of chaos [Fig. 6(b)]. Although the
Poincare section is still clear, wrinkles start appearing on
the torus, which can be caused by increasing nonlinear
interaction due to coupling between two oscillatory
modes. Recently, using U tubes more smoothly connect-
ed at L =0 we have observed chaotic motions developed
from cockscomb patterns at smaller control parameters,
where a torus is not apparent and the Poincare section no
longer yields useful information [Fig. 6(c)]. In order to
document the deterministic chaos, using 8000 sampling
points we calculated the correlation integrals C (s) in-
troduced by Grassberger and Procaccia, ' which show
the possibility that two points at the attractor are
separated by a distance smaller than a and scale as
C (s)-s'. The dimension of the attractor was deter-
mined from correlation exponent v which was plotted as
a function of the embedding dimension m (=1,2, . . . ,
10). We got good convergence of stationary values
which are v=2. 18 ~0.03 and 2.87 ~0.06 for the attrac-
tors of Figs. 6(b) and 6(c), respectively. The fractal
asymptotic value of v indicates the existence of the
strange attractor.

The transition to chaos has been observed in several
acoustic systems" where the route to chaos is a sequence
of a period-doubling bifurcations ~ Ia Feigenbaum. In
particular the Faraday experiment by Ciliberto and Gol-
lub' showed that the chaotic behavior arises from com-
petition between diAerent spatial modes or patterns.
Theoretical works in parallel with the experiment were
performed by Meron and Procaccia' in order to make
clear the appearance of few-dimensional chaos in sys-
tems with an infinite number of degrees of freedom. Our
experiments on chaos resemble the Faraday experiment

in some respects; chaotic region and mechanism. How-
ever, there is no theoretical work to explain the bifurca-
tion structure observed in Taconis oscillations.
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