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Polarization Solitons
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We consider the interaction of counterpropagating pulses via a X(3) nonlinearity, in an isotropic elec-
trostriction medium. The polarization is taken into account and can vary through each pulse; group-
velocity dispersion is neglected. We find a family of analytic solutions, termed polarization solitons,
which play a central role in the dynamics. Upon interaction, the net eff'ect on their polarization profiles
is a rigid rotation in Stokes-vector space. As special cases, they include the first nontrivial examples of
polarization-transparent and orthogonally switched pulses.

P =A(E* E)E,

where for a lossless medium 2 is real. We introduce the
slowly varying amplitudes e~ and e2 to describe pulses
propagating in the +z and —z directions, respectively.
For a small nonlinearity, in the plane-wave approxima-
tion we deduce in the usual manner the equations of
motion,

(6/t)r+ t)/t)g)et;

=i&{[(e~* e~)+(e2 e2) jet;+(e2 et)e~;[),

(6/6 r —t)/t) &)e p;

= it {[(e2 eq) + (e~ e~ ) ]e q;+ (e~* e2)« ~,

(2)

PACS numbers: 42. 10.Nh, 42.65.Ma

Solitons and solitary waves' in nonlinear optical media
have received a great deal of attention in recent years
both as an intriguing topic in mathematical physics, and
because of interest in their application to optical devices.
They arise for example with self-modulated pulses in the
presence of group-velocity dispersion and in certain
multiwave-mixing processes. In this Letter we consider
a degenerate four-wave interaction consisting of two
counterpropagating pulses in a Z medium, with arbi-
trary polarizations which can vary through each pulse.
We neglect group-velocity dispersion, which results in

the intensity profiles propagating unchanged from their
initial forms. The polarization, however, evolves accord-
ing to the nonlinear interaction and it is found that it can
exhibit soliton behavior.

We have discussed some general results for the
steady-state spatial polarization distribution of counter-
propagating plane waves, for all propagation-axis rota-
tion symmetries C„, n ~ 1, in parity-invariant and
-noninvariant media. Previous workers considered the
more restricted cases of isotropic media and a C4
propagation axis in parity-invariant media. The analo-
gous dynamical problem is significantly more dificult;
we consider the simplest case of an isotropic parity-
invariant medium with the electrostriction mechanism of
the nonlinearity. Furthermore, the response time of the
nonlinearity is assumed to be instantaneous

In such a medium, the third-order complex polariza-
tion can be written'

st e lj (rr)j ke 1k ti e2j(ct)jke2k, i = 1,2, 3, (4)

where o; are the Pauli spin matrices, and the indices j
and k are summed over 1 and 2. The magnitude of each
Stokes vector is simply proportional to the respective in-
tensities,

so=—
I
s

I
=ei e&, to=

I
t

I
=e2 e2—.

The correspondence between the direction of the Stokes
vector and the polarization is indicated by the Poincare
sphere (see Fig. 1 and, e.g. , Ref. 4). We also make a

change of independent variables to

x = —,
'

(g —r), y =——
—,
' (&+ r), (6)

which represent spatial coordinates in the moving refer-
ence frame of the first and second pulse, respectively.
The leading and trailing edges of the pulses are de-
scribed by (x,y) ~ and (x,y) —~, respectively.

Using Eqs. (2), (3), (4), and (6) we deduce the
Stokes-vector equations of motion,

Bs/t)y =ktxs, |)t/t)x =Xsxt. (7)

These are coupled Bloch equations which describe pre-
cession of the Stokes vectors about one another. In the
general case of arbitrary initial polarizations, which can
vary through each pulse, this motion is nontrivial. Even
in the case of initially constant polarizations the dynam-
ics is complicated since the leading edge of each pulse
distorts the polarization with which the remainder of the
pulse interacts. However, if we take the dot products of

where the index i runs over the two transverse com-
ponents (x and y, which we denote by 1 and 2). Here r
and g are dimensionless time and space coordinates, and
k characterizes the strength of the nonlinearity,

r= kocopl, (=kpz, k =2trA/ep

Further, ko is the carrier wave number, cup is the group
velocity (at the carrier frequency), and ep= 1+4ttZ(cop),
where E is the isotropic linear susceptibility. In arriving
at Eqs. (2) we have neglected group-velocity dispersion.

This problem is best approached from a Stokes-vector
formalism, which clearly elucidates the polarization as-
pects. We define the Stokes vectors"
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s and t with their respective equations of motion, we find

sp(x, y) =sp(x), rp(x, y) =ra(y),

and thus the intensity profiles counterpropagate, at the
group velocity, unchanged from their initial forms. This
is a direct consequence of our neglect of group-velocity
dispersion: The intensity profiles are fixed by initial con-
ditions. We shall consider these profiles as arbitrary, as-
suming only that they are of finite area. While the
pulses are widely separated, the polarization config-
urations also propagate unchanged in form. Of course
while the intensity profiles are overlapping the polariza-
tions evolve according to Eqs. (7).

Uniform polarization solutions of Eqs. (7) (s=+ t)
have been discussed in the context of plane waves.
The limit where one pulse intensity is very small has also
been considered, in an electric field formalism. ' We can
considerably extend these results to the nontrivial case
when both intensities are of significant magnitude. Re-
turning to Eqs. (7), upon addition we find

vl(x, y) =L l(v(x)+d(y)), (i4)

where c(x) and d(y) are unknown functions to be deter-
mined, we are able to obtain the solution

sinO, sinO,
cos[ft, (x) ~ y, (y)+go],csin 0, —0,

sin0, cosO, Q, (x) ~ sinO, cosH, ltll (y)
X,y csin(0, —0, )

L l(x y)=—

(15)

sinO, sinO,
l.'3(X,y) = .

' '
Sin [ltl, (X) ~ ftl, (y) + lflo].csin 0, —0,

Here 0„0„and lfll1 are arbitrary constants (H, aO, ,
0 ( 0„0,( z, 0 ( fflo (2x) specified by initial condi-
tions, and

sin(0, —0, )
y, (x) =k .

' ' „so(x')dx',
sinO,

(12) allows us to write v3 as a function of v L, or vice ver-
sa. Using this property, and restricting ourselves further
to functions t.

~
of the form

Bs/By+ Bt/Bx =0, (9)

which suggests that we introduce a vector potential v
such that

s =Bv/Bx, t = —Bv/By. (io)

Then Eq. (9) is automatically satisfied and from either
of relations (7) we obtain the governing equations for the
vector potential,

a L'L BVz BL'32

ax ay ax ay

a v2 Bv3 BL'l2

Bxay Bx By

B L.'3 Bv l av22

Bxay Bx By

aiL'2 Bv 3

By Bx

'Bv3 Bv L

By Bx

Bvl Bv2

By Bx

Though these equations are second order they involve
only three unknown functions v, as compared to six in
Eqs. (7), and the right-hand sides are simply Jacobian
determinants. We shall obtain a family of analytic solu-
tions by restricting our search to functions for which one
of the 3acobians vanishes identically, let us say the
second one:

B(v3 Vl) =0.
B(x,y)

(i2)

The equation of motion for v2 can then be integrated to
obtain

L z(x,y) =a(x)+b(y), (i3)
where a(x) and b(y) are arbitrary functions, which we
will eventually relate to initial conditions. Because of
some basic properties of 3acobian determinants, ' Eq.

s l (x,y) =so(x) sin0, sin [&,(x) ~ p, (y) + po],

s2(x, y) =sp(x)cosH„

$3(x,y) =$0(x)sln0 cos [lid (x) ~
le (y) + ftlp],

r 1(x,y) = ~ ro(y)sinH, sin[lf1, (x) + p, (y)+Ltlo],

r 2(x,y) = + LL1(y)cos0(,

r 3 (x,y) = + to(y) sin 0, cos [lid, (x) ~ le, (y) + lf10].

(i 7)

Substitution of these expressions directly into Eqs. (7)
verifies that they are indeed a solution. These are also
well defined for O, =O„ in which case they reduce to the
trivial steady-state solutions s = + t, mentioned previous-
ly. The angles 0 and lid are identified as spherical polar
coordinates in Stokes-vector space with the 2 axis as the
polar axis.

To understand the nature of the solutions (i7), we
look first at the polarizations of the pulses when they are
widely separated. The initial polarization distribution of
the s pulse is described by Eqs. (17) upon our setting
y =~, which in turn implies lt, (y) =0. Moving through
the pulse (x ranging from +~ at the leading edge to—~ at the trailing edge) the Stokes vector s describing
the local polarization is at a fixed angle O, from the 2
axis in Stokes-vector space (see Fig. 1). But it rotates
about that axis, beginning at an angle po from the 3 axis
at the leading edge of the pulse; moving towards the
trailing edge of the pulse, the rotation at a given point is

sin(0, —0, )
y (y) =X .

' '
) ro(y')dy',

sinO,

where so(x) and ro(y) are also specified by initial condi-
tions. Then from Eqs. (10) and (15) we obtain our solu-
tions in Stokes-vector form,
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FIG. 2 Profile of the solitons whose polarization varies in a
definite manner as a function of position in the pulse.

FIG. 1. The Poincare sphere showing the correspondence
between polarization and the directions of the Stokes vector.

proportional to the area of the intensity in the pulse up
to that point. That is, the ellipticity of the polarization is
constant, but the angle that the major axis of the ellipse
makes with a space-fixed direction varies in a definite
way with the intensity distribution. A similar description
applies to the initial distribution of polarization in the t
pulse (see Fig. 2).

As the pulses interact their polarization distributions
rotate about the polar axis in Stokes-vector space. The
rotation angle at a given point in one pulse is proportion-
al to the area, up to that point, of the other pulse; see
Eqs. (16) and (17). Upon emerging from the interaction
the net result is only a rigid rotation of the initial polar-
ization distribution about the polar axis in Stokes-vector
space. We refer to such solutions as "polarization soli-
tons.

!
The emerging s pulse, obtained from Eqs. (16) and

(1 7) bv our setting y = —~, is

sl(x) =so(x)sin8, sin[/, (x) + P, +pp],

sz(x) =so(x)cosOg,

$3(x) sp(x)sinO, cos[&, (x) ~ P, + po],

where

sin (0, —9, )
rp(y')dy' (i9)

S

The rotation angle p, is simply proportional to the total
area of the t pulse. If this angle is an integer multiple of
2z then the s pulse emerges from the interaction with its
initial polarization configuration. An analogous argu-
ment applies to the emerging t pulse, and if the corre-
sponding rotation angle is also a multiple of 2z then we
have solutions which represent transparent pulses, as
concerns the polarization. On the other hand if 6, =sr/2
and the rotation angle p, is an odd-integer multiple of zr

then the emerging s pulse is orthogonally switched from
its initial form, s(x) —s(x).

At this point we note that the Stokes-vector equations
of motion (7), as well as the vector-potential equations

11), are invariant under an arbitrary SO(3) rotation in

Stokes-vector space. Thus an arbitrary SO(3) rotation
of the solution (17) is also a solution. In other words, we
can choose the polar axis in any direction in Stokes-
vector space and we obtain a solution analogous to Eqs.
(17). Thus the previous discussion applies to a whole
family of solutions.

Finally, we consider the absolute phases of the electric
fields, which are not described by the Stokes vectors. We
write the slowly varying electric field amplitudes as

e x,y) = [I!e, (x,y)!exp[id(x, y)]+y! e~(x,y)!exp[ —iA(x, y)]]exp[i@(x,y)], (20)

where 6 describes the relative phase and y the absolute phase of the fi ld W he o e e . it in our approximations we obtain a
c ose systems of equations (7) for the Stokes vectors, that is, for the amplitudes and relative has Th
that we found can bee substituted back into the electric field equations of motion (2) to determine the absolute

s an re a ive p ases. e solutions

In this manner, we obtain
o e ermine t e a solute phases.

y, (x,y) =y, (x,yp) —Esp(x)(y —yp) ——X 3+, rp( ')d1 sinO,

2 sinO,

(2i)

yr(x, y) =pi(xoy) pro(y)(x xo) ~ 3+ .
'

g" so(x')dx'1 sinO,

;„O

for the s and t pulses, where x and dyo denote initial coordinates. For pulses initially widely separated x )) 1 h
first term in each of E s. (21)qs. ~ is the initial phase variation. The second term in each describes s lf- h d 1

~ a e &0 yo , t e

an intensit -de endent wavi y- epen en wave vector and frequency shift. The last terms represent cross-phase modulations which van-
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ish initially and approach a constant as the pulsed be-
come widely separated.

In conclusion, we have found a family of solutions—
polarization solitons —which play a central role in the
polarization dynamics of counterpropagating pulses.
Until interaction their polarizations remain constant, and
upon interaction the net efI'ect is a rigid rotation in

Stokes-vector space. These include the first nontrivial
example of pulses which are transparent or orthogonally
switched with respect to polarization. More general ini-
tial conditions and an extension of these results to arbi-
trary physical mechanisms of the nonlinearity is current-
ly under study. Such pulses will probably constitute a
better way to study such nonlinear systems than the
steady-state solutions previously discussed, since in

practice the initial conditions can be more easily set.
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