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Levy Dynamics of Enhanced Diffusion: Application to Turbulence
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We introduce a stochastic process called a Levy walk which is a random walk with a nonlocal memory
coupled in space and in time in a scaling fashion. Levy walks result in enhanced diflusion, i.e. , diflusion
that grows as t', a& 1. When applied to the description of a passive scalar diff'using in a fluctuating
fluid flow the model generalizes Taylor's correlated-walk approach. It yields Richardson's t' law for the
turbulent diflusion of a passive scalar in a Kolmogorov ——', homogeneous turbulent flow and also gives
the deviations from the —, exponent resulting from Mandelbrot's intermittency. The model can be ex-
tended to studies of chemical reactions in turbulent flow.

PACS numbers: 47.25.3n, 05.40.+j

In the 1920s and 1930s Levy' was concerned with the
question of when a sum of identically distributed random
variables has the same probability distribution as any
one of the terms in the sum. This is a question of scaling
and the paradigm of fractals, i.e., when can a part have
the same proper'ies as the whole. Levy completely
solved this problem and the resultant distributions are
now called Levy's stable laws. In general, Levy's laws
deal with probability densities which have infinite mo-
ments and thus do not possess a definite scale as would
be appropriate to Gaussian statistics, for example.
While Levy's has become a well-established field of
mathematics, the appearance of infinite moments has
blocked its usefulness in physical applications despite the
1954 prediction of Gnendenko and Kolmogorov that "It
is probable that the scope of applied problems in which

they play an essential role will become in due course
rather wide. "

In this Letter we discuss the way in which Levy distri-
butions can be applied to the statistical-mechanical
description of the dynamics of complex physical systems
possessing many scales, and show how these distributions
may be used to describe the phenomenon of enhanced
diffusion Sublinear diff. usive growth in which the
diAusion coe%cient increases with time as t with e~ 1

is familiar from disordered materials and trapping
phenomenon in condensed matter physics. Enhanced
diAusion with a & 1 arises in such cases as phase
diAusion in the chaotic regime of a Josephson junc-
tion, chaos-induced turbulent diAusion, the relation
between the root-mean-square characteristic length of a
polymer and the number of monomer units, diA'usion of
a Brownian particle in a pure shear flow, and the zero-
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component spin model with long-range interactions, as
well as the diAusion of a passive scalar in a turbulent
flow field. ' Herein we stress the application to tur-
bulent diAusion since its space-time context subsumes
the characteristics of the less complex phenomena. We
stress, however, that the arguments presented here are
quite general and extend beyond the bounds of turbulent
fluid flow.

Fully developed "homogeneous" turbulence involves
spatial and temporal features covering many scales and
no satisfactory description of the dynamics of such a flow
field exists. ' Three important developments which his-
torically have furthered our incomplete understanding of
turbulence are the following.

(i) Richardson's —, law: In an empirically motivated
argument Richardson constructed the phase-space
equation of evolution

aP(R, t)/at =(a/eR) [~(R)eP(R, t)/aR)

with the turbulent diffusion coefficient given as K(R)
~R I, where P(R, t) is the probability that two parti-
cles placed in a turbulent fluid and initially near to one
another have a relative separation R at time t. An ex-
tended discussion of Eq. (1) and its degree of validity is

given in Sect. 24 of Monin and Yaglom. ' The solution
to (1) leads immediately to Richardson's observation
that (R;t) —t, where the brackets denote an average
over the distribution P(R, t) which solves (1).

(ii) Kolmogorov's ——', law: In 1941 Kolmogorov ' '

argued that at small scales and in the limit of vanishing
viscosity the rate of energy transfer across a scale R, cz,
is independent of R, i.e. , e~ =e, a constant, in a region of
active turbulence. This argument leads to an energy-
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wave-number spectrum E(k) -e k i . In 1962 Kol-
mogorov ' acknowledged that turbulent dissipation is

spatially dependent and proposed log-normal statistics
for the velocity field to describe the observed patchiness
in the turbulent activity.

(iii) Mandelbrot s intermittency: At least since 1974
Mandelbrot' has argued that turbulent activity (dissi-
pation) is concentrated on a fractal set of dimension df,
rather than being homogeneous in a Euclidean dimen-
sionality E =3. This result was anticipated in part by
Richardson, who noted that the velocity field in the at-
mosphere shared a number of properties with the Weir-
strass function, i.e. , it appeared to be continuous but not
diA'erentiable. Recent experiments' suggest that p =E
—df —0.2+ 0.05.

Previous attempts to relate these turbulence results
with the use of Levy distributions have been unsatisfacto-
ry. ' Although scaling is inherent to Levy laws, no
direct connection to turbulence is obvious because the
mean square displacement (R;r) is infinite and not pro-
portional to t as found by Richardson. In the next sec-
tion we introduce a random-walk process which we call a
Levy walk. Based on Levy-type distributions this walk
results in enhanced diffusion for which (R;r) grows su-

perlinearly with time (t for turbulence). This Levy-
walk approach is a generalization of Taylor's correlated
walks' which result in (R;t) t. W-e show the con-
nections among Richardson's law, Kolmogorov's scaling,
and Levy walks as a context in which to develop a gen-
eral theory of enhanced diftusion. The spatial intermit-
tency corrections called for by Mandelbrot can be treat-
ed in a natural fashion to provide corrections to Richard-
son's law.

Consider a random walker who jumps with probability
p(R) between successively visited sites, however distant.
When the mean square displacement (R ) per jump is
Pnire then the probability density for the position of the
walker after many steps is Gaussian. When (R ) is
infinite this random process possesses no characteristic
length scale and the set of sites visited is a fractal. This
random process is called a Levy flight and the governing
probability density is called a Levy stable law. "

Very often one considers that the walker can wait, or
pause, for a random duration at each site before making
an instantaneous jump to another site. ' This waiting
time can be interpreted to correspond to the jump dis-
tance. ' Such processes have been called continuous-
time random walks because the emphasis is on the time
rather than the number of steps. ' Here we extend these
concepts and introduce +(R,r) to be the probability den-
sity of making a step R that takes a time t to complete,
thereby generalizing the notion of a Levy flight.

We now consider a random walker which visits the
same sites as a random Levy flight, but instead of having
instantaneous jumps which lead to an infinite mean
square displacement we choose the joint space-time

FIG. 1. The set of points visited by a Levy walk. It includes
the same set of points as the Levy flight, plus the trail it takes
connecting these points. The Levy flight points are called turn-
ing points. Diff'erent velocities can be associated with diff'erent
path lengths.

probability density

e(R, r) =y(r
I R)p(R), (2)

where p(R) is the probability that a jump (or correlated
persistence length) of displacement R occurs and
y(r I

R) is the conditional probability density that, given
that the jump R occurs, it takes a time t to be completed.
For simplicity we choose

y(r I R) =~(r —
I
R Ii I v(R) I ), (3)

W(R', z) = JI W(XR', Xz)dX. (6)

where we take into account a velocity which depends on
the jump distance (or length of the correlated per-
sistence). When the second moment (R ) of p(R) in

Eq. (2) is infinite then no largest walk scale exists and
we call this process a Levy walk to distinguish it from a
Levy flight. The distinction is introduced by Eq. (3)
which weights the jumps according to the time spent in
each step. We call the end points of each straight line
segment in Fig. 1 the turning points of the trail of the
Levy walk. These are the points visited by the associated
Levy flight.

The probability density g(R;r) of reaching the turn-
ing point R exactly at time t is given by (in a lattice
model)

Q(R, r)
r~

=+JI Q(R —R', r —z) +(R', z)dz +8(R)p(r ). (4)
R'

The probability P(R, r) of being on any point R at time t
is then obtained from

d
dt R'

P(R, t) =gJ g(R —R', r —z)W(R', z)dz, (5)

where
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The mean square displacement of the process at time t is

given by

(R';t)=Jr ~R~'P(R, t)dR

'V),P(k, s) ii, =p, (8)

where L ' is the inverse Laplace transform. Note that
Eq. (7) is quite general and can be applied to any physi-
cal problem for which the correlation of the steps [cf. Eq.
(3)] is known.

We now consider a random-walk description of a fluid
medium which possesses a wide distribution of correla-
tion lengths and associated velocities generated by the
spatial and temporal structure of fully developed tur-
bulence. We use the Levy walk as a statistical represen-
tation of this process and choose in Eq. (2) for large

~
R

~
the probability for a correlated persistence length

of displacement
~
R

~
to be

p(R) —iRi -'-t', 0&P&1, (9)

The g term brings the walker to R —R' at time t —r,
while the 8 term allows for jumps of length kR' to be
completed in times Xz for all k ~ 1. All these jumps con-
sidered in the IV term have average velocity

~

R' ~/r and
thus pass through R at time t; except for the X =1 term
the walk segments pass through but do not terminate at
the point R. Equation (5) generalizes the standard
continuous-time random-walk approach wherein the
walker pauses for random times between instantaneous
jumps. ' Equations (4)-(6) present a formulation of the
problem in which the dynamics and the physical observ-
ables are described by an integral equation in which the
multiplicity of scales is explicitly taken into account.
This differs from the diffusion-equation approaches of
Richardson and Batchelor ' which are inappropriate for
describing a discontinuous or intermittent process such
as turbulence.

Combining Eqs. (4) and (5) allows one to calculate
P(R, t) (and thus in principle all statistical quantities) in

terms of +(R, t), i.e. , in Fourier (R k) and Laplace
(t s) space:

sP(k, s) —P(k, t =0) = I/[I —0(k, s)]8'(k, s).

V(R) —R", )
= —,

' +(E —df)/6 (10)

The scaling relation given by Eq. (10) enables us to
calculate the probability density that a displacement of
length R takes a given time t to be completed by use of
Eq. (3). Inserting this value for V(R) into Eq. (3) and
using (9) to evaluate Eq. (8), we calculated the mean
square separation of two particles in an active region of
the flow as t

so that the distribution of walk distances has no charac-
teristic mean scale, i.e., ~alks of all lengths occur. We
choose y(t

~
R) as in Eq. (3) and below use Kolmo-

gorov's scaling"' to choose the proper dependence of
the velocity on the length scale R.

Let us assume that the relative velocity V(R, t)
=v(r, t) —v(r+R, t), of two particles separated by a dis-
tance R, is statistically independent of r. For the case of
turbulent diffusion the conditional probability that a
jump of distance R occurs, taking a time t to be complet-
ed, is dependent on the relative velocity between two par-
ticles in the same active region of the fluid flow. Since
this velocity is built up from a superposition of eddies,
each with a distinct velocity, the rate of separation of the
two marker particles depends on the distribution of rela-
tive velocities. If the turbulence is concentrated on a
fractal set of dimension df, and the usual thermal molec-
ular diffusion governs the much slower motion not on the
fractal set, then the average kinetic energy density ER
associated with a scale R is Eg —V~p~, where p~ is the
probability that the two particles in question are both
on the fractal set. The probability pg is given by

E —df(R/Ro) I, where Ro is an outer length scale. Benzi
and Vulpiani use a combination of the theory of sto-
chastic differential equations and scaling to estimate pR,
whereas Hentschel and Procaccia ' use a scaling argu-
ment alone. The rate of energy transfer across the scale
R is e~ = Ett/t~ = V~ptt/R when both v(r, t ) and
v(r+R, t) are in the same actite region of the flow. If
c~ =e denotes a constant rate of energy transfer then

V/ = 8 R ' (R/R())

and denoting the root-mean-square velocity as V(R), we
obtain from V (R) = V)tp~ the result

t 12/(4 —p) t 3@i(4—p)+3
p ( (I )/3

(R t) —' t ""' '"" "' (I it )/3 P (10—p)/6, —
t, P) (10—p)/6,

where p =E —df. Note that the scaling exponents de-
pend on the index P as well as the fractal dimension, a
result not previously encountered and one which relates
the spatial dynamics to the various diffusive regimes. It
is interesting to point out that the time exponent in the
first domain is also the value determined by Hentschel
and Procaccia, ' who used a much different method of
analysis. Furthermore, the two limits in the second case

smoothly match the first and third cases. The first case
[p ( (I —tt)/3] corresponds to an infinite mean time
spent in a correlated transition so that no characteristic
transition time exists. Diffusion is the most enhanced in
this domain. The last case [p) (10—p)/61 is analogous
to molecular diffusion. Note further that if p =0, i.e. ,
there is no correction for intermittency, and p( —,

' the
Richardson t law is recovered as we anticipated.
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We'have provided a statistical description of enhanced
diffusion based on Levy s probability limit distributions
for random variables with infinite moments. A divergent
result for the mean square displacement is avoided and
replaced by a time-dependent result by our associating a
time scale with correlation lengths (jump distances).
The basic transport equation involves an integral equa-
tion ~ith a coupled (scaled) memory +(R,t) nonlocal in

space and time. This is in contrast to the approaches of
Richardson and Batchelor, ' who used second-order
differential equations with a space- and time-dependent
diffusion coefficient to describe the enhanced diffusion of
turbulence. Richardson himself pointed out the ques-
tionable nature of that approach because of the discon-
tinuous nature of the velocity flow field in the atmos-
phere. Foios, Manley, and Temam used a simple
random walk model to interpret a new form of the
Navier-Stokes equation they derived for which an inter-
rnittency exponent was also obtained. Using a Levy-
walk stochastic process, with a memory function based
on Kolmogorov scaling, we derive Richardson's t law of
turbulent difTusion with the intermittency corrections
called for by Mandelbrot. '

Within the framework of the Levy-walk description of
enhanced diffusion we conclude, according to Eq. (11),
that Kolmogorov scaling does not necessarily imply
Richardson's law. We do, however, derive the same re-
sults for (R;t) as previous authors ' for the values

P ~ (I —p)/3 which in the present context indicate that
low-order moments do not uniquely determine the statis-
tics of non-Gaussian processes. The Levy-walk approach
also provides a dynamical picture of the scalar motion,
which will allow the study of other such dynamical pro-
cesses including, for example, chemical reactions in tur-
bulent flows with the use of known random-walk schemes
for reaction rates via first-passage-time calculations.

If in our first analysis we had let V(R) = V (a con-
stant) then the result of Taylor' for maximal enhanced
difl'usion (R;t)—t would have been obtained. This re-
sult has also been obtained via a mapping as well as via
a Levy walk to describe chaos in a Josephson junc-
tion. It is thus apparent that fully developed tur-
bulence (in a fluid) and chaos (in a Josephson junction)
are quite diAerent phenomena. However, a common ele-
ment in the description of these processes is the Levy-
walk approach to enhanced diAusion.
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