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Description of the Dodecagonal Quasicrystal by a Projection Method
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Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Academia Sinica, Shenyang, China

(Received 18 March 1986)

A 2D Ni-Cr quasicrystal displaying a twelvefold symmetry consists of a dodecagonal quasi unit cell
which is an intergrowth of Zr4A13 and Cr3Si structures. If the quasi unit cell is represented by a
geometric point, then this quasicrystal can be described by a quasilattice derived by a projection method.

PACS numbers: 61.55.Hg, 61.50.Em

A number of hexagonal Frank-Kasper phases are
known to exist whose structure consists mainly of hexag-
onal antiprisms or chains of Z14 Kasper polyhedra. '

Electron-diAraction patterns of these phases are charac-
terized by a twelvefold distribution of strong diAraction
spots, implying a long-range orientational order of these
Z14 polyhedra. Ishimasa, Nissen, and Fukano have
recently reported an electron-diAraction pattern display-
ing a twelvefold symmetry but no translational symmetry
in evaporated Ni-Cr films. They have correctly reached
the following two conclusions: (1) A two-dimensional
twelvefold Ni-70. 6 at. % Cr quasicrystal consists of two
basic constituents, i.e, , the Cr3Si and Zr4A13 units, both
having the basic edge length of 4.58 A as measured by
Yukawa et al. (2) The high-resolution image of these
Ni-Cr particles can be explained by a model of inter-
linked regular dodecagons. However, they did not give
the detailed arrangement of the atoms in each dodecagon
and how these dodecagons were linked together. We
propose a preliminary solution of these problems first by
deriving a twelvefold quasilattice from a projection
method.

We now define vectors q&, q&, . . . , q6, each of which
starts from the origin and ends at a vertex of a regular
dodecagon as shown in Fig. 1, as the projections of the
basic vectors 81,82, . . . , 86, respectively, of a 6D cubic

crystal into a 2D subspace. Vectors q &,q2, . . . , q6
represent the projections of 81,82, . . . , 86 into a 4D sub-
space perpendicular to the 2D subspace. Defining
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and P =I —P; I is the unit matrix. Suppose r
represents the lattice vector of the 6D cube; then

llq

r =MA,

where M = [mt, m2, . . . , ms]; m; (i =1,2, . . . , 6) are in-
tegers. If we use rz and rz for the projections of r in the
parallel and orthogonal subspaces, respectively, we have

r," =Mg" =mP "A,

and

FIG. 1. Quasibasic vectors q~, qJ', . . . , q6 of a dodecagonal
quasicrystal.

r J =MP~W.
P

rz was calculated from the formula (1) under the con-
straint lrz I

(pa or MP M(p, where a=la;I
(i =1,2, . . . , 6). The result showed that the end points
of rz formed a dodecagonal quasilattice [see Fig. 2(a)]
whose configuration depends on p. Let p = y[(2
+j3) 'I ]" (n is an integer and y is a real number arbi-
trarily chosen); then y determines the shape of the quasi-
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lattice and n the scale. Thus for constant y but different
variable n, similar quasilattices result, the only diA'erence

being the edge length of the smallest dodecagon. For ex-
ample, the edge length of the smallest dodecagon in-

creases (2+ J3) 'i times when n decreases by l. If we

keep n constant and change y from I to (2+ J3) 'i, the
structure will change from that corresponding to
[(2+J3)'i2]" to that corresponding to [(2+j3)' ]"+'
continuously. This indicates that the dodecagonal quasi-
lattice has self-similarity. Gardner, s Bruijn, 9 Dekking, 10

and others have pointed out the self-similarity and
inflation rules of Penrose and other aperiodic tilings. By
this criterion, our model is also a kind of Penrose tiling.
Bruijn and others pointed out that the structure can be
described in terms of Penrose tiling or by a projection
method and that these two approaches are equivalent to
each other. The dodecagonal quasilattice is a projection
onto a 2D subspace from a 6D hyperspace and, there-
fore, it is a 2D quasilattice.

Figure 2 shows a quasilattice corresponding to P
=1.838[(2+J3)'i ] '. This quasilattice is character-
ized by interlinked regular dodecagons. The edge length
of the dodecagon may be determined by indexing of the
electron diA'raction spots of the quasicrystal. The elec-
tron diff'raction spots are also the projection of a 6D re-

ciprocal cubic lattice onto a 2D reciprocal subspace and

have the self-similarity which causes di5culty in index-

ing. However, as Elser" pointed out, diffraction spots
can be indexed in accordance with their intensity. If we

ignore the effect of the atomic distribution in a quasi unit

cell, as a first-order approximation, the intensity will de-

pend on the lengths of g and g which can be calculat-
ed by the following formulas:

Ig"
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~here H=(hl, h2, . . . , h6) and is the index of a 6D re-

ciprocal lattice point and h; (i =1,2, . . . , 6) are integers.
Roughly speaking, the smaller lg"

I
and lg I

of a re-

ciprocal spot are, the stronger its Ig is. Our calculation
showed that for lg" I/I a*

I
(i.e. , a")( 3.732 and

g I / I
a*

I
(i.e. , a ) ( 0.5176 there were only two

groups of dilTraction spots, i.e. , {001111]and {012221]
(see Table I). [(h i, h2, . . . , h6) represents a single
diffraction spot, {hl,h2, . . . , h J, twelve spots symmetri-

cally distributed about a twelvefold axis. ] Figure 3

shows the distribution and indices of these spots which

happen to be those that are detectable in Fig. 1(b) of
Ref. 6.

The lengths
I

a*
I

and
I g I

of basic vectors of a 6D re-

ciprocal cube lattice and of a quasilattice can be calcu-
lated by
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FIG. 2. (a) A quasilattice of a dodecagonal quasicrystal.

(b) Atomic structure of Ni-Cr dodecagonal quasicrystal. (c)
Optical diAraction of a much bigger dodecagonal quasilattice
than (a).
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TABLE I. Calculated Ig" I/I a*
I

and Ig I/I a*
I

for 6D
reciprocal cubic lattice spots }h t t h 2, . . . , h s}.

7O1222 Oln21

}h )h2h3h4hshs}

012221
001111
011111
210112
211011

~" (I g"I/I a* I )

3.732
1.932
2. 155
3.244
1.577

(
I g

0.2679
0.5179
0.5977
0.6859
0.7155

2)1012

B0122

00011 1111pp

001111
100111 ~ 01111p

12221 0

20)apl

117ppl 1 1 1 po 1

0

where g can be measured by an experiment, while e
can be found from Table I. According to Fig. 1(b) of
Ref. 6, I

g"
I

of (012221) was measured to be 5.02
nm '. From the above equations, we have

I

a*
I

=1.345 nm ',
I a

I

=0.743 nm,

I q I

=0.429 nm,
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where
I q I

is in an agreement with the result reported by
Yukama et at'. with a diAerence of 6%. Finally, a struc-
ture having a twelvefold symmetry is constructed by re-

placing each quasilattice point by one quasi unit cell
(QUC) which is described below.

The quasi unit cell of a twelvefold quasicrystal is indi-
cated in Fig. 2(b) by a regular dodecagon of thick lines.
The twelve vertices of the dodecagon together with the
six dots inside it, which are all located at the centers of
corresponding hexagonal antiprisms due to the inter-
growth of Zr4A13 and Cr3Si units, form a framework of
the unit cell. The square JKLM is the Cr3Si unit, the
regular triangle HGI, a half of the Zr4A13 unit, while the
hexagon ABCDEF is three incomplete Cr3Si units hav-

ing a threefold symmetry which has already been ob-
served by Ishimasa, Nissen, and Fukano inside a dode-
cagon in the high-resolution image of their Ni-Cr quasi-
crystal. It can be seen in Fig. 2(b) that there are three
Cr3Si units, eight triangles representing the eight halves
of Zr4A13 units, and two hexagons showing a threefold
symmetry in a QUC. This QUC, like the unit cells of
Cr3Si, Zr4A13, and other hexagonal Frank-Kasper
phases, consists of four layers. The double circles are at
the 4 and 4 levels, respectively, while the circles con-
nected by dotted lines are at the Z=0 level and the
small dots connected by full lines at the Z= —,

' level,

forming hexagonal antiprisms.
The structure of a two-dimensional quasicrystal hav-

ing a twelvefold symmetry can be obtained by placing
one QUC described above on each quasilattice point.

Figure 2(b) indicates the following distinctions be-
tween a QUC of a twelvefold quasicrystal and a 2D unit
cell of a crystal: (1) The former is a regular dodecagon
in the two-dimensional space, whereas the latter is a
parallelogram. (2) The former has no translational sym-
metry, but has rotational symmetry. (3) Unlike the
latter, the former cannot fill the whole space by simple
translational operations without overlapping. However,

FIG. 3. The distribution and indices of two group diffraction
spots, }001111}and }012221},of a dodecagonal quasilattice.

in the overlapped area the atoms of one unit cell exactly
coincide with those of the others. (4) The former has
twelve possible orientations, whereas the latter has only
one.

The model of quasilattice proposed in the present pa-
per is quite a general one which can be applied for the
description of any twelvefold quasicrystal, though the
model for the atomic structure is based on a specific
Ni-70. 6 at. % Cr material. This is quite similar in spirit
to such a situation, as the Penrose tiling' is well suited
for any fivefold quasicrystal lattice, while a specific
atomic structure only corresponds to a fivefold quasicrys-
tal with a specific composition.

'

Figure 2(c) shows a typical optical diffraction pattern
of a much bigger dodecagonal quasilattice than Fig.
2(a). Obviously, the spots in Fig. 2(c) cannot be defined

by any parallelogram. The strong spots are consistent
with those in Fig. 1(b) of Ref. 6 while the weak ones do
not appear in that figure. This may be because Fig. 2(c)
is the optical transformation of an ideal quasilattice,
whereas Fig. 1(b) of Ref. 6 is that of a high-resolution
image with many imperfections. The scale of Ref. 2(c)
was calculated according to

I q I
=0.458 nm.
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