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Hydrodynamic Dispersion in Network Models of Porous Media

Lucilla de Arcangelis, t'i Joel Koplik, t2l Sidney Redner, l'l t2i and David Wilkinsont2i
t"Center for Polymer Studies and Department ofPhysics, Boston Vniversity, Boston, Afassachusetts 0221S

'2i Schlumberger Dol-i Research, Ridgefield, Connecticut 06877
(Received 3 February 1986)

%e consider the longitudinal dispersion of dynamically neutral tracer placed in a fluid flowing
within a porous medium. For a random tube network, we derive the exact rules for tracer motion
under the combined action of molecular diffusion and convection, and we introduce an efficient
"probability propagation" algorithm which permits an (in principle) exact calculation of the first-
passage-time distribution of the tracer as it flows through the medium. With our formalism, we ex-
hibit both linear and nonlinear dispersion phenomena in two-dimensional random networks.
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When a localized pulse of dynamically neutral tracer
is released in fluid flowing in a porous medium, it
disperses under the combined action of molecular dif-
fusion and convection. Dispersion has great practical
relevance since this ubiquitous phenomenon plays an
important role in numerous applied fields such as oil
recovery, ground water hydrology, chemical process-
ing, and chromatography. ' In this Letter, we develop
a new methodology to understand the subtle interplay
of diffusive and convective effects for dispersion
phenomena in random-network models of porous
media. Our method provides an (in principle) exact
calculation of dispersion which overcomes the inade-
quacies of previous numerical treatments.

The conventional macroscopic description' ~ of
dispersion is provided by the convection-diffusion
equation (CDE)

'C+ U'C=D "C+D r C,
rJt r)x

where the average fluid velocity U is in the x direction,
and the longitudinal and transverse dispersivities Ds
and Di depend on both U and the geometry of the
porous medium. The qualitative properties of Ds are
particularly interesting: As U 0, molecular dif-
fusion dominates, and D~~ tends to a constant —the
molecular diffusion coefficient, D, reduced by a fac-
tor reflecting the confined geometry of the porous
medium. For high velocities, Ds is controlled by
mechanical mixing: Different tracer particles are con-
vected along different fluid streamlines, each charac-
terized by a distinct transit time across the system.
With respect to the average flow, the tracer therefore
performs a random walk between pores, since some-
times the tracer is moving faster than the average
flow, and sometimes slower. The characteristic time r
for a single random-walk step is of the order of //U,
the typical time to travel between pores, where i is a
typical grain size in the medium. Therefore one ex-

pects D~~
—I /r —Ul.

However, this simple picture is inadequate as a
result of important logarithmic corrections due to re-
gions containing very slow-moving fluid. 2 3 In a ran-
dom tube network, D~~ is proportional to (t ) —(t) 2,

where (t") =fdv t"(v)p(v) denotes the moments of
the transit time for a single tube. Here p(i~) is the
probability of the tracer velocity being equal to v, and
t(u) is the transit time at that velocity. In the limit of
pure convection, p is proportional to the fluid flux and
therefore to v, while t(~) = I/u. The range of it is
from zero (for steps orthogonal to the local pressure
gradient) to O(U) (for steps along the average gra-
dient). Hence (t ) diverges logarithmically for v 0
and molecular diffusion must be introduced in order to
remove this singularity. 3 The divergence is cut off
when the convection time reaches the diffusion time
and, in consequence, Ds —U/log(UI/D ).

To investigate these subtle logarithmic effects in
random systems, a sensitive numerical method is re-
quired. Our approach is based on three ingredients:
(i) We exploit the analogy between Poiseuille flow in
a random tube network, and electrical current flow in a
random resistor network. Thus the steady-state elec-
trical currents in a random-resistor network are used to
specify the flow field of the background fluid which
carries the tracer. (ii) We have devised an extremely
efficient "probability propagation" algorithm which is
an exact calculation of the first-passage probability dis-
tribution for an ensemble of tracer particles. In previ-
ous numerical work, 4 individual particles were fol-
lowed through a network and first-passage statistics
were recorded. In the absence of slow regions this
method is adequate but in general it fails unless an as-
tronomically large ensemble is studied. The difficulty
is that particles are unlikely to enter the slow regions
~bile it is just these inadequately sampled regions
which give the dominant contribution to dispersion.
(iii) As discussed above, the effects of molecular dif-
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fusion must be included if the second and higher mo-
ments of the transit time are to be finite. Here we cal-
culate exactly the first-passage probability density for
tracer to traverse each tube under the combined action
of convection and molecular diffusion. This provides
the basic "microscopic" rule for tracer motion.

To calculate the first-passage-time probability densi-
ty for the network it is both elegant and convenient to
work in the Laplace-transform domain. Let p»(s) be
the Laplace transform of p»(t), the first-passage prob-
ability density that a tracer at node i reaches a neigh-
boring node j in a time t, and Iet P(s) be the Laplace
transform of the first-passage probability density P(t)
for the entire network. With the assumption that the
p»(s) are known, then P(s) is given in terms of the
p»(s) by

P()=x [p, (), (2)
I' /j E I

where the sum is over all paths I' from the inlet I to
the outlet 0of the network. 9

To compute this sum over paths efficiently, we first
order the nodes of the lattice in decreasing pressure
order, starting with the inlet and finishing with the
outlet. At each node i, we introduce a quantity Q (s)
which is a partial sum of the form (2), over paths run-
ning from the inlet to site i Initial. ly Qt=1 at the inlet
I (for a delta-function input of tracer) and Q = 0 else-
where. We then proceed recursively through the
pressure-ordered node list (starting with the inlet)
propagating the quantity Q from each node i to its lat-
tice neighbors jaccording to the rule

Qg(s) —Qg(s) + Q, (s)P»(s), Q, (s) —0. (3)

The lowest (outlet) node is not propagated. After all
the internal nodes have been propagated once in this
way, the quantity Qo(s) at the outlet contains all the
terms in (2) corresponding to purely downstream
paths. If there were no molecular diffusion, all the
tracer would be collected at the outlet after a single
such downstream "sweep" through the networ!.-. In

J 2
an L x L network, there are O(e~ ) independent
downstream paths, and our propagation method sums
over all these paths in an algorithm time that is of the
order of Lz logL.

Because of molecular diffusion, however, the tracer
motion includes upstream paths as well. In this case,
after one sweep through the network, one has Q„e0
in general for internal nodes. By a sweep downstream
through the network again and propagation of the resi-
dual probability, the contribution of all paths involving
exactly one (diffusive) upstream step are included. By
repeated sweeps through the network, the contribution
of paths with progressively more upstream steps are
included. We find that the first-passage probability
[which is just P(0) ] converges to unity geometricaliy

in the number of sweeps, in that a roughly constant
fraction of the residual probability is extracted in each
sweep. Thus the propagation algorithm performs a
rearrangement of the sum over paths in (3), and gives
P(s) exactly, up to geometric convergence.

To complete our calculational approach, we must
specify the microscopic rule for tracer motion under
the combined influence of convection and diffusion,
namely the quantity p»(s) for each node i A. t the lev-
el of a single tube, the tracer concentration, c(x, t),
satisfies the one-dimensional CDE'

Bc/Bt+ uBc/Bx=D 8' /c8 x,

where x is the longitudinal coordinate along the tube,
D„ is the molecular diffusion coefficient, and u is the
average fluid velocity in the tube. Now consider a net-
work of such tubes [ji}of common length I, but with
a distribution of cross-sectional areas S», and focus on
node i which is connected to z distinct nodes (j}. The
concentrations in each tube ji, c»(x;,t), each satisfy
(4), with initial condition c»(x», 0 =0, and three
boundary conditions: (i) a unit pulse input of flux at
node iat t=0,

XS«u»c» —D~ » =5(t);
8x» x& 0

(ii) a common concentration g;(t) at the starting junc-
tion, c»(0, t) =(,(t) for all J; and (iii) a sink at each
tube end, ci&(i, t) = 0 for all j, corresponding to the fact
that tracer reaching the end acts as a source for the
junction problem at the new node. The first-passage
probability is then simply the flux, p»(t) = —S»D~
x "d c»( I, t )//dx(~.

To solve, we take the Laplace transform of (4),
obtaining z second-order ODE's for the Laplace
transform concentrations c»(x,s). The general solu-
tion is

a&~ p~xc»(x,s) = A»e» +B»e ",
n», P»= (1/2D ) [u(, +(u,J+4D s)'i'],

where the 2z coefficients A» and B& may be deter-
mined from the boundary conditions (i) to (iii) above.
After several steps we find

p»(s) =g, (s)S» ii l»

~ik lko'eke ~eke
Su

The limiting behavior of the rather untransparent ex-
pressions in (6) is familiar, in the diffusive limit
(u» 0 for all j) we find that the probability to exit
via tube ij and the average time required for this event
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[obtained by differentiating A&(s)] are Ai(0) =S»/
g„Sz and (ri&) = l2/2D, while for the opposite con-
vcctjvc limit (all iu) ~) we have, for u» positive,
Ai(0) = ui~Sij/(gku, kS~) and (r; ) = I/u», where the
sum is over the outward-flowing tubes. For the
inward-flowing tubes (u» negative) the corresponding
exit probability vanishes exponentially as ) u»i

It is important to realize that the quantities P»(s) in

(6), together with (2), provide the exact solution to
the set of tube-level convective diffusion equations for
the whole lattice. This is because the p»(s) yield not
only the exact exit probability and mean transit time
for each link, but also the effects of longitudinal
dispersion within each link exactly. Thus our approach
gives the exact probability distribution for a random-
walk model in which there is a different time for each
"step, " and where each "step" represents the contin-
uum solution of the traversal time problem for each
link. From this viewpoint our method should have
wide applicability to transport in random media. "

To demonstrate thc power of these methods we in-
vestigate dispersion in a square lattice of tubes with
cross-sectional areas uniformly distributed in the inter-
val [1——,

'
w, 1+ —,

' w], with w representing the degree
of disorder in the system. Two sides of the lattice are
set at constant pressure and the other two are connect-
ed by periodic boundary conditions. The lattice axes
are oriented at 45' with respect to the average flow
direction. The constant-pressure lattice edges are
identified as inlet and outlet nodes for tracer, and we
use probability propagation and the exact expression
for p»(s) to compute P(s), and thereby obtain mo-
ments of the transit time distribution.

We analyze the data by matching the standard devia-
tion a 2T =—( t ) —( r) 2 found in the simulation with the

corresponding quantity obtained by treating the entire
network macroscopically. The standard deviation can
be obtained directly from P(s) via (r") = ( —t)/
t)s) "P(s) i, =o, and these derivatives may be approxi-
mated numerically in terms of P(s) for discrete
values of s near s=0. At the macroscopic level, we
assume that the system satisfies the CDE (1) with
boundary conditions of unit input at the inlet, and a
"sink" at the outlet. We solve this equation by the
same method used to obtain (6), thus obtaining

eM
P(s) =

M, coshM, + M sinhM,
'

where M, =—( M2+ sL2/Dii ) t/2 and M is the macro-
scopic Peclet number M= UL/2Diii. This represents
the reduction of expressions (6) to the case of a single
bond. Then the standard deviation of the transit time
is obtained by differentiation of this expression, yield-
ing

o' = (L/U)'f(M),
where L is the system length, and

f(M) = M '[M —,
' +-(2M—+1)e-'M

+ i e-4M]

From our computed value of o. 2T, we obtain Dii by a
graphical solution of (8), as indicated in Fig. 1. Notice
that only in the limit M ~ (pure convection),
where f(M) 1/M, do we recover the widely quot-
ed4 simple relation Dii = (U3/2L)o. 2T. In general, the
right-hand side of (8) is nonmonotonic, so that the ex-
traction of Dii from numerical data requires consider-
able care. As scen in Fig. 1, for any value of U there
are in general two possible values of M; the correct
one is determined by the requirements that the ob-
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FIG. 1. Schematic numerical data for ( U/I )2o j as a function of U together with a plot of f(M) of Eq. (8) vs I Each da-
tum point is matched with a point on the f(M) curve as indicated by the letters. From the value of M so obtained, a curve of
DI as a function of U is inferred. At high velocity, ( U/L )2a 2T shows a second increase as a function of U, a behavior which
corresponds to Dt[ increasing faster than linearly with U.
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FIG. 2. Comparison of the velocity dependence of the
macroscopic dispersion coefficient, D~t, for a 10x10 net-
work with w=0.5 (plusses) and 1.5 (circles). Plotted is

D~~/Ul vs the (microscopic) Peclet number Ui/D . The
data represent averages over 1000 and 2000 configurations,
respectively. The latter case gives rise to a regime of non-
linear velocity dependence where D~~/ Uiis increasing.

tained value of M is a smooth function of U, and that
M 0 as U 0. The consistency of this picture re-
quires that (U/L) o.r is nonmonotonic and that its
maximum value matches that of f(M). That this
indeed happens in our simulations provides strong evi-
dence that the system is well described by the CDE
(1), with a velocity-dependent macroscopic dispersion
coefficient D~~.

In Fig. 2 we show simulation results on 10X10 lat-
tices with two different values of the disorder parame-
ter w. For small disorder ( w = 0.5), there is a well-
defined value for the ensemble average of the
"slowest" bond in the network. Consequently, there
is a sharp transition from a low-U regime, where all
the bonds are diffusive and D~~ is U-independent, to a
high- U regime, where all the bonds are convective and
Da varies linearly with U. However, for larger disor-
der (w=1.5), an infinite ensemble of systems will
contain arbitrarily slow bonds. In this case, the disper-
sion at high velocity will be dominated by the small
fraction of tracer which spends time in these slow
bonds, while the majority of the tracer is convected
through the rest of the network. In this regime, we
find that ( U/L)2o. 2T exhibits a second increase for in-
creasing U, as illustrated schematically in Fig. 1(a).
This means that the corresponding point in Fig. 1(b)
retraces back along the f(M) curve, corresponding to
D~~ increasing faster than linearly in U (Fig. 2). At
very high velocities, all the bonds are convective, be-
cause for any finite ensemble there is a lower limit to

the slowness of the bonds, and therefore D~~ is exactly
proportional to the velocity.

In summary, we have developed a new approach
which provides an exact description of dispersion and
other transport phenomena in disordered media. We
have derived the exact rules for tracer motion in ran-
dom tube networks under the combined action of
molecular diffusion and convection, and combined this
approach with probability propagation to yield a nu-
merical method which is both very powerful and accu-
rate. We are able to compute the macroscopic
behavior of D~~ over the whole velocity range. Furth-
ermore, for strongly disordered networks, we have
found a regime of faster than linear velocity depen-
dence of D~~ which is indicative of the logarithmic
behavior predicted by Saffman. We are now applying
our method to dispersion in poorly connected media,
in order to elucidate the very interesting effects due to
stagnant regions and large-scale heterogeneities.
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