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%e sho~ that the use of the interelectronic vector as adiabatic axis allows t~o-electron states of
atoms to be described in terms of molecular orbitals. The associated potential curves can be ob-
tained by scaling calculations on the H2+ molecular ion and shoe for doubly excited states a strong
similarity to adiabatic curves obtained from an analysis in hyperspherical coordinates. %e associate
a definite molecular symmetry ~ith each t~o-electron state.
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The three-body Coulomb problem of two nuclei and
one electron, exemplified by the H2+ molecular ion, is
the fundamentally simplest problem of quantum
chemistry. The usual approach to the solution of its
internal motions is first to solve the Born-Oppen-
heimer problem for the energy levels of the electron in
the field of two stationary nuclei, then to allow the nu-
clei to vibrate in the potential well provided by the
sum of electronic and nuclear potential energy, and fi-
nally to consider the rotation of the triangle formed by
the three particles from the body-fixed frame to the la-

boratory frame. The natural internal coordinates for
such a scheme are the Jacobi coordinates of the inter-
nuclear vector R and the coordinate r of the electron
relative to the center of mass of the two nuclei. The
use of such relative two-particle coordinates has the
obvious advantage that the character of the internal
motions can be readily visualized. The density pat-
terns of the electronic eigenstates, the correlation dia-

grams of electronic levels, the vibrational wave func-
tions for bonding and antibonding levels, and the
rotation-vibration structure form the everyday
language of molecular quantum mechanics.

The two-electron atom is another three-body Cou-
lomb problem of fundamental interest. The "old-
fashioned" method of attack is to solve for the motion
of each electron separately in the field of the nucleus
and to form approximate eigenstates as products of
such solutions. Correlation between the electrons is
then introduced implicitly by consideration of linear
combinations of such product states or explicitly by in-
clusion of functions of the interelectronic separation
R = r&

—r2. An alternative approach to the two-
electron atom which has received wide application and
development over the last few years is the use of
hyperspherical coordinates. ' ' Here the "size*' of the
atom is measured by a hyperradius fl. = (ri2 +r2 )'l
while correlation is measured by Euler angles and a hy-

perangle determined by the ratio r2/ri. The use of 9
as an adiabatic coordinate allows a description to be
developed in which states are defined as vibrational
levels in adiabatic energy curves as a function of A.

The adiabatic hyperspherical method has been ex-
tremely useful in the description of doubly excited
states of atoms and the particular highly correlated
motion which occurs when the three-body system has
zero total energy. This threshold configuration is well
described by hyperspherical coordinates, but that these
coordinates are by no means essential has been
demonstrated before. 6 Moreover, it was recognized
long ago that a "molecular" description of a two-
electron atom could be given. 7 s In this case the in-
terelectronic separation is the adiabatic distance R and
the vibrational potential curves correspond to different
states of relative motion of the center of mass r of the
two electrons with respect to the nucleus. Such a pic-
ture would seem to be a poor description of the ground
states of helium and H . Nevertheless, the zeroth-
order energies emerging from a molecular atomic
model are surprisingly good.

Here we show that for highly correlated two-electron
systems, such as He, H, or even Ps, the zeroth-
order molecular adiabatic curves provide remarkably
accurate descriptions of the character and existence of
doubly excited states. Since two-electron atoms have
the structure of a homonuclear molecular ion with the
roles of nuclei and electrons reversed, the molecular
orbital (MO) energies as a function of R can be ob-
tained simply by scaling of those of H2+. From this
scaling property one sees that the principal differences
in character between the bound and low-lying reso-
nance states of different two-electron systems arise
from the different energies of "united-atom" (8 0,
two electrons together) and "separated-atom" (8

~, one electron bound, the other at infinity) limits
of the MO correlation diagram. For doubly excited

1986 The American Physical Society



VoLUME 57, NUMBER 8 PHYSICAL REVIEW LETTERS 25 AUeUsT 1986

4 ttcc &Date+ ( (2)

with T=O or 1.' These are eigenfunctions of Pi2

states, electron correlation would appear to stlffeil the
line R joining the two electrons. This "internuclear"
axis and oeeurrence of the Wannier ridge 6 could ac-
count for the method's usefulness, despite the ap-
parent lack of an expansion parameter in the atomic
case analogous to the ratio of electron mass to nuclear
mass in the molecular case.

The basic picture corresponding to the adiabatic
separation in electronic coordinates R and r is the fol-
lowing. The position of the two electrons and the nu-
cleus defines a triangle with one apex fixed at the nu-
cleus. The motion of the center of mass of the two
electrons relative to the nucleus is described by a solu-
tion of the adiabatic MO problem. For a given MO,
the change in the magnitude of R is described by a vi-
brational wave function. Finally, the vibrating triangle
can rotate in space. It is clear that this picture is likely
to be a good one when the three separate types of
motion are relatively decoupled, that is, when no rapid
shear deformations or changes in surface area of the
triangle occur. The basic wave functions describing
these three motions can be written as

+(nlKLS) = f„ttcL (R )p„ttc, (r,R )

xDMtc(y, e, y)x(SM, ).
Here, LS coupling is used, X(SM, ) is a two-electron
spin wave function, and D~z is a matrix element of
the rotation operator describing the transformation
from a space-fixed to a body-fixed frame by Euler an-
gles p, 8, @. The projection E of the total orbital an-
gular momentum along R is the same as the projection
of the orbital angular momentum of the center of mass
of the two electrons relative to the nucleus along R.
This projection quantum number labels the MO wave
functions P„ttc, (r,R) as o, n, 8. . . -according as
~K ~

-0, 1, 2. . . . The quantum number t signifies the
symmetry of the MO under interchange of the two
electrons. By convention from the H2+ problem, even
symmetry is denoted by g (t = 0) and odd symmetry
by u (t -1). The quantum numbers n and I order the
MO of a given symmetry according to energy and
designate the "united-atom" principal and orbital
quantum numbers of the atomic orbital to which the
MO correlates as R 0. The wave function f„tt tc (R)
describes the vibrational motion of the interelectronic
axis. The basic wave functions (1) are not, of course,
eigenfunctions of the full Hamiltonian but are coupled
together by nonadiabatic and Coriolis couplings. From
a consideration of the transformation properties of the
wave functions (1), one can show that eigenfunctions
of the electron exchange operator Pi2 and parity opera-
tor P can be constructed from the combination

with eigenv«ues ( —1) ' and eigenfunetions of P
with eigenvalues ( —1)T+". That MO are further
characterized by a separation constant, given as the
eigenvalue of a two-center Runge-Lenz-type operator,
distinguishes the present approach from similar ones
based on single-center Runge-Lenz vectors. "'2

The two-electron states and their associated sym-
metries can then be obtained quite simply by a con-
sideration of the ordering of the MO provided by the
correlation diagram. The lowest two MO are the lscrs
and 2p o „pair correlating to the ls separated-atom lim-
it. The lsos has K = 0, t =0 and from the above
eigenvalues gives rise to 'S', 'P', 'D'. . . series with
increasing total angular momentum L=0, 1, 2, . . . .
The 2po„"antibonding" MO has K=O, t=1 and
therefore gives rise to atomic states 3S', 'P', 3D' with
increasing L. Already at this stage the "molecular"
explanation of atomic structure emerges. For exam-
ple, the lowest singlet state 'S' is based on the bonding
ls aI MQ, whereas the lowest triplet state 3S' is based
on the promoted antibonding 2p cr„MO. This explains
immediately why the triplet state in helium lies so far
above the singlet ground state and why the 'S' state of
H is bound but the S' state is not.

The MQ occur in pairs of g, u symmetry and each
pair separates to a well-defined Stark state. Higher
MO separate to an atom in the n -2 state. For exam-
ple, the 2s era, 3pa„pair and the 3dos, 4fcr„pair have
lowest states 'S',3S', as do the Isis, 2pa„pair. . States
with Ke0 occur first in the 3dn1, 2pn„pair. From
the allowed eigenvalues of parity and permutation
symmetry one finds that the lowest states based on
these MO must have L -1 but can have either spin;
i.e., the 3dms MO gives rise to L = 1 series of charac-
ter 'P' and 3P' and the 2pm„MO to series of character
3P' and 'P'

The adiabatic potential-energy curves supporting the
vibrational and rotational motion are obtained from
the MO energies'3 by addition of other correction
terms. The final shape of the curves decides the char-
acter of internal motion associated with a particular
symmetry. In the H2+ case it is usually sufficient to
add the internuclear repulsion term 1/R to the MO en-
ergy to give Born-Oppenheimer (BO) potential curves.
This is because the expectation value of the non-BO
operator —Vti/2p, ,2, i.e., diagonal coupling, is small
in this case since p, i2 is the reduced mass of the two
protons (in units of the electron mass). In the case of
two electrons, although the internuclear potential en-
ergy is trivially replaced by the same 1/R interelectron-
ic potential energy, the diagonal coupling cannot be
neglected since the electrons have a reduced mass
p, i2= —,

' and I/p, i2 is no longer a small number. One
effect of the omission of this correction is that the MO
energies do not have the correct asymptotic limits, a
deficiency which has been recognized for a long
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time. ~'4' The scaling of the MO wave functions and
energies and inclusion of the diagonal coupling can
serve, however, to correct this deficiency. An op-
timum scale parameter at each R can be determined
variationally by our minimizing at each R the adiabatic
energy with diagonal coupling. We have found9 that
this scale parameter is, however, a slowly varying
function except for small R where the 1/R potential,
which does not scale, dominates. For the present we
thus find it adequate to determine the scale once and
for all as R ~. Then, the resulting adiabatic energy
curves have exactly the correct asymptotic limits.

A feature, not usually of importance in the H2+

problem, is that the diagonal coupling introduces an
explicit dependence on the quantum numbers L and K
into the adiabatic molecular curves. Hence, curves of
quite different character are obtained from states of
different L based on the same MO. This is readily
seen from the approximate large-R form of the expec-
tation value of —%&2/2pi2, which, denoted by C(R),
has the property'6
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C (R) = I/4n2+ I L (L + 1) —2E }/R (3)

for large R. In fact, we have used this approximate
form in constructing the adiabatic potential curves we
present here, since only in one case 2pn„have we
found in the literature accurate values of C(R) for all
R.' Hence, except for this case, the quantitative ac-
curacy of our results is limited at the present time.
However, it is not likely that a subsequent more accu-
rate evaluation will seriously alter any qualitative pre-
dictions since again all curves at small R, where the
approximation (3) fails, are dominated by the 1/R in-
terelectronic repulsion.

Our adiabatic potential curves for the states of H
separating to n = 2, obtained with C(R) from Eq. (3),
are shown in Fig. 1. From the symmetry properties of
the wave functions (2), states of 'P' symmetry are ob-
tained from the 3p a „,4fa„, and 2p n „MO and shown
in Fig. 1(a). They display a remarkable similarity to
the hyperspherical curves in Fig. 2 of Lin2 and allow
molecular symmetry assignments to be given to those
curves. For example, the 3p a „MO is antibonding and
gives a fully repulsive potential curve (labeled "pd"
by Lin). The 4f~„ is similarly a promoted MO but has
at large R sufficient 2p character to be first depressed
in energy and give rise to a shallow minimum. This is
the "—"state of Lin's classification2 4 giving rise to a
series of Feshbach resonances in e -H scattering. The
2pm„MO is a bonding orbital and therefore has a
deeper minimum, but the different nature of the
long-range Stark splitting in the n case gives rise to a
slight maximum. Hence, this "+"state which sup-
ports a shape resonance is of 2pm „MO character. An
important point to note is that the 2pn„and 4fa.„
curves have a real crossing because of their different

FIG. 1. The adiabatic potential energy curves of the (a)'P' and (b) 3P' states of H correlating to the n = 2 level of
H.

MO symmetries. 'a By contrast, the corresponding
adiabatic hyperspherical curves have an avoided cross-
ing, and crossing is only forced by inclusion of off-
diagonal coupling.

The gerade partners of 3pa.„, 4fa.„, and 2pw„,
namely 2sas, 3das, and 3dna, support states of 3P'
symmetry whose potential curves are shown in Fig.
1(b). Again, inspection of Fig. 2 of Lin shows that
these curves correspond respectively to this "pd,"
"+," and "—"classification of the 3P' states. The
2sas MO is the highest lying of the six n =2 MO at
large distances and, therefore, is wholly repulsive. By
contrast, the 3daa MO increases its binding energy
strongly at intermediate R (it tries to stay 2p-like) with
the result that the corresponding potential curve has a
deep minimum. This is the "+"3P' curve of Fig. 2
of Lin. 2 The "—"curve has 3dns MO character and
in our case has a shallow minimum in contrast to Lin's
result. At this level of sophistication in our calcula-
tion it is not possible to say that this minimum is real.
A more accurate form of the diagonal coupling than
provided by (3) may make this curve more repulsive.
In addition, the 3dma and 3daa MO will mix by off-
diagonal rotational coupling and the real crossing
shown in Fig. 1(b) will become avoided, pushing down
the 3daa MO. By contrast, the adiabatic hyperspheri-
cal "+" P curve exhibits the proper long-range at-
tractive dipolar form. Finally, we find that the 'P' and
3P' pair of curves of Fig. 4 of Lin arise simply from
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MO symmetry to each curve and to explain electron
correlations and nonadiabatic effects in terms of fami-
liar molecular concepts of long-range Stark splittings,
hondinl or antibonding eharaeter, and radial and rota-
tional eouplings.
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FIG. 2. The adiabatic potential energy curves of the 'P'
states of Ps correlating to the n -2 level of Ps.

the lowest even-odd pair of MO of n symmetry, name-

ly, the 3d n s and 2Jr m „.
In the one case of the 2@m„MO, the diagonal cou-

pling matrix element C(R) is available in the litera-
ture, ' and a more accurate scaling can be made. The
principal effect of this correction on the potential is to
lift the minimum up and push it out to larger 8, leav-
ing the qualitative shape in Fig. 1(a) unchanged. 's We
find the potential barrier to peak around 8 =16 a.u. ,
6.8x 10 3 Ry above the H(n = 2) threshold, and esti-
mate a 'P' shape resonance at 40 meV above thresh-
old in fair agreement with Lin's hyperspherical deter-
mination of a 'P' shape resonance at 28 meV. 2

Finally, in Fig. 2 we have rescaled our H curves to
describe doubly excited states in Ps . The resulting
potentials are qualitatively similar to those obtained in
H and very similar to hyperspherical Ps curves cal-
culated recently by Botero and Greene. ts In particular,
our more accurate' 2@m„'P' potential has near
8 =40 a.u. a maximum barrier height of 6.8x10
a.u. above the Ps(n = 2) threshold, and we estimate a
'P' shape resonance at 3.5&& 10 4 a.u. above threshold
somewhat lower than Botero and Greene's determina-
tion of a 'P' shape resonance at 4 x 10 4 a.u.

To summarize, we have obtained adiabatic potential
curves for two-electron systems by scaling matrix ele-
ments calculated for the H2+ molecular ion. In the
case of double excitation, we have demonstrated a
close similarity of our curves with ones calculated as a
function of hyperspherical radius. The molecular
description, however, allows us to associate a definite
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