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The internuclear separation is used as a continuous parameter to vary the coupling strength
between resonances of different autoionizing series in order to study the interference effects and
the validity of independent-resonance models. This interference can have profound effects on the
autoionization mechanism, which are demonstrated for e~ +H,* collisions. The new feature
predicted by our calculations is the analog in the resonance case of avoided crossings for bound
states and opens new avenues for an understanding of the autoionization process and has interest-

ing experimental implications.
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Resonances play important roles in the description
of collisions in atomic, molecular, surface, and nuclear
physics.!* Of particular interest are Feshbach or
core-excited resonances, which arise from the tem-
porary trapping of the colliding particle in the field of
an excited state of the target. These compound states
are unstable and decay to a final configuration of the
target and scattered particle. However, the trapping
produces a time delay in the motion of the continuum
particle resulting in an enhancement of the cross sec-
tion in the vicinity of the resonant energy. This time
delay is associated with a lifetime 7 or width (I'=1/7)
of the resonant state. Since various autoionization as
well as recombination and dissociative processes’
operate through such resonances, their study is also of
great interest to such diverse fields as plasma physics,
laser physics, surface physics, and astrophysics.® In
electron collisions with atomic and molecular ions, the
Feshbach resonances lie in Rydberg series that con-
verge on the ionization limits of the compound sys-
tem. In many cases, different series can overlap and
in some instances strongly interfere if the coupling
between the various components is large. As first
demonstrated by Cooper, Fano, and Prats’ in their
classic study of the effects of correlation on the au-
toionization mechanism, this interference can dramati-
cally alter the widths and positions of the isolated
series. In addition, in certain cases the phenomenon
of bound states embedded in the continuum? can arise.
arise. Therefore, the study of these interfering series
is vital to an accurate description of autoionization and
its associated mechanisms and to the determination of
the validity of certain independent-resonance models.
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Unfortunately, in most cases, the relative positions of
the series are fixed, obviating a systematic study of
the interference effects as a function of the coupling
strength. What is needed is a continuous variable that
changes the relative coupling strengths between the
series. For atomic systems, models using an external
magnetic field have been invoked. In the case of
molecular systems, the internuclear distance R serves

‘a similar purpose and has distinct advantages as the

continuous variable since no new external electric or
magnetic fields need to be introduced. At each value
of R, we perform a set of calculations of the resonant
widths and positions for the various series. We can
therefore systematically change the relative positions
and coupling strengths between the resonant states by
simply varying R. While the internuclear distance has
been used as a probe of pseudo-bound-state behavior
for elastic collisions,’ this Letter reports its first sys-
tematic use to study interference effects among Fesh-
bach resonances below various excited-state thresh-
olds. As an example, we investigate the 'TI, reso-
nances below the first excitation threshold (1o,) for
electron scattering from the hydrogen molecular ion
H,* as a function of the internuclear distance R since
this symmetry exhibits the most dramatic interference
effects.

We have performed scattering calculations using
four different approaches: (1) the R-matrix method,!?
(2) the complex-basis-function method,!! (3) the
close-coupling linear-algebraic method,!? and (4) the
effective-optical-potential, linear-algebraic method.!?
In all four approaches, we seek a solution to the
Schrédinger equation for the interaction of a continu-
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um electron with a single-electron target molecule
fixed at R*:

(Hy+ Vot Ve + T,)¥(1,2) = E¥(1,2), e))

with 7, the Kinetic energy of the continuum electron
and V,, (V,) the interaction between the continuum
electron and the nuclei (bound electron). The Hamil-
tonian describing the target H,* molecule is given by
H, and has associated eigenstates {¢,}. We expand
the total system wave function as

v(1,2)= S 46, ()F,(2)

n=1

+3%,(1,2)d,, ()

(6l F,) =0, (2b)

where A is an antisymmetry operator and F, is a
scattering solution. The first term (P space) includes a
summation over a limited number of target states for
which scattering information is directly desired while
the second term (Q space) is added for completeness.
In the close-coupling formulation [close-coupling
linear-algebraic method or m-state close coupling
m CC)] we include a sufficient number m of target
states in the P-space part to guarantee convergence of
the resonant parameters; the correlation functions are
merely employed to relax the strong orthogonality
constraint [Eq. (2b)]. For the other three methods, P
space is constrained to a small number of terms of in-
terest while the (-space part is expanded to include
the doubly excited states and their interaction. The
Feshbach resonances in the latter case are primarily
modeled by the correlation functions while in the CC
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FIG. 1. Schematic representation for the I, symmetry of
the loynm} and 17w} no, Feshbach resonance series of H,*
lying below the 1w, threshold for e~ -H,* scattering as a
function of R. The resonances are depicted by solid lines,
the states of H,* by dashed lines.

approach they are represented by the closed channels.
We have employed all four methods in order (1) to
provide accurate cross comparisons for this sensitive
problem and (2) to study the interplay and the conver-
gence properties of the Pand Q spaces. Further details
of this study will be reported in a future paper.

We are now ready to investigate the effects of cou-
pling (strong interference) on the independent-
resonance formulation (IRF). In Fig. 1, we present a
schematic representation of the core-excited reso-
nances of H," with respect to the bound states of H,™*
as a function of R. We are particularly interested in
the resonances below the first excited-state threshold
(1o,), for which all channels but the elastic are
closed, and in their interaction with the resonances ly-
ing below the 1, state. Since the 1, state is degen-
erate (w}), we also have a third series of the form
1oy n85+ ; however, this series plays only a minor role
and will be neglected in this exposition but not in the
calculations. At internuclear distances beyond the
equilibrium for H,* (R=2.0agy), the second series
lies above the 1o, excited state and has little effect on
the first series. The lowest state of the first series has
the form lo,lmy and goes to the united-atom limit
for He* of 2p3d while that of the second series,
1w} 20, becomes 252p. However, from atomic ob-
servations, we know that the 2s2p is the lowest-lying
resonance for e~ +He™ scattering. Therefore, the
two independent series must cross between the
united-atom limit and R =2.0g,. Whether this cross-
ing will result in overlapping or strongly interfering
resonances depends on the strength of the coupling
between these two series.
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FIG. 2. Resonant position E, as a function of R for the
lowest few !TI, resonances in the lo,nw;} (solid lines) and
1w} no, (dashed lines) series in 2CC. The numbers give
the order of the resonances within each series.
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We pursue this model in a more quantitative fashion
in the next set of figures. Figure 2 displays the
resonant positions E, of selected states in the two
series, loynm) (solid lines) and 1w noy (dashed
lines), calculated in an IRF. In other words, we em-
ployed a two-state CC approximation (m=2) in each
case, a [1oy, 10, for the first series and a [log, 17 ]
for the second. Between R =1.00gq and 1.25a,, we
observe the lowest resonance state from the second
series crossing all of the loynmS curves. The
loynmy series has widths of approximately 3-4 meV
while the 17 20, width is of the order of 70-80 meV.
If we wish to follow the lowestlying resonance, we
start on the loylm, curve 1 at large R, move in to
point b (R =1.06a,), and then switch to the 17 20,
curve 1'. The width remains at about 3 meV until b
and then suddenly changes to 80 meV (1— 1'). The
second-lowest resonance would be described by curve
2 (1o,2m,) from large R to point a (R =1.16ay),
curve 1’ from a to b, and curve 1 from b to smaller
values of R. This behavior of the width as a function
of R is depicted in Fig. 3 in the IRF by the solid
curves. We now introduce the effects of coupling
(dashed curves) between the two series by performing
a 4CC calculation [log, 10, 17 ]. We observe from
Fig. 3 that the effect of the coupling is both to shift the
position of the maxima and to broaden the curves.
The contrast between the ‘‘box’’ structure of the IRF
widths and the broad curves of the fully interfering
case lends dramatic support to the necessity of includ-
ing coupling effects in some overlapping-resonance sit-
uations. The enhancement of the resonant width at
larger values of R could have profound ramifications
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FIG. 3. Resonant width I' (meV) as a function of R for
the lowest three !II, resonances. Solid curves, 2CC (in-
dependent series); dashed curves, 4CC (fully coupled). The
numbers label the order of the resonances in each case.
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for a process like photoionization. The larger width
might allow certain transitions that arc highly forbid-
den in the IRF. We thus observe that such interfer-
ence effects can dramatically alter the resonance struc-
ture and substantially effect the scattering.

Finally, in Fig. 4, we present 4CC calculations with
the close-coupling linear algebraic method for the
widths of the lowest three !TI, resonances as functions
of R. For comparison, we also included several SCC
(4CC +20,) results for the lowest resonance. All four
methods produced results in very good agreement, in-
dicating the efficacy of representing the doubly excited
resonances by large (-space expansions. We note the
distinct change in the behavior of the lowest resonance
around R =1.2q,. This marks the point at which the
dominant configuration changes from 10'u27r;' (R
> 1.2) to 17 20,. This behavior of the lowest reso-
nance for H,* is unique to the II, case. For example,
for the 3; resonances at large R, the two series are
loyno, and 17} nwl with the former lying lower in
energy. The lowest resonance of the first series goes
to a united-atom limit of 2s? while that of the second
series forms a 2p? state. As the 2s? resonance lies
lowest, these two resonance curves will not cross.
Since the widths of the lo,nw, series are so small
(=3-4 meV), we did not unambiguously observe
behavior consistent with bound states embedded in the
continuum. The width in the SCC calculations (I' <1
meV) does become smaller than that for the 2CC case.
However, whether this is anomalous is difficult to
judge. A case in which the two series have resonances
of almost the same width would provide a better test.
The second rise in the width of the third resonance at

"(meV)

FIG. 4. Resonant width I' as a function of R for the first
(solid curve), second (dashed curve), and third (chain-
dashed curve) lowest !TI, resonances in 4CC; crosses, SCC.
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about R =0.6a, represents the crossing of the second
17} noy state.

We observe that by changing the internuclear
separation for the target molecule we can systematical-
ly study the interference effects between two or more
series of Feshbach resonances without introducing any
new interactions. This provides a valuable tool for as-
sessing the validity of independent-resonance models
in both atomic and molecular systems. Whether these
effects can be observed experimentally for H,* is
another question. Based on simple calculations, we
feel that these effects might manifest themselves in
the dissociative photoionization of H, provided that
the target system could be prepared in an excited vi-
brational state (v=3). Certainly the effect is not
unique to H,* and would arise for many other molec-
ular systems.
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