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Atomic Effects in Low-Energy Beta Decay: The Case of Tritium
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In a recent experiment, Simpson found an excess intensity in the measured tritium beta spectrum
belo~ 1.5 keV. A detailed account of the decay energy and Coulomb-screening effects raises the
theoretical curve in precisely this energy range, so that little, if any, of the excess remains. This
correction is shown to be approximately given by a simple analytical expression.

PACS numbers: 23.40.8~, 14.60.6h, 2'7. 10,+h

Simpson' observed a surplus of electrons below 1.5
keV in the beta spectrum of tritium (see Fig. 1 of Ref.
1) and interpreted this as evidence for mixing of neu-
trino flavors and for the existence of a second neutrino
with mass 17.1 keV. The belief in this interpretation is
waning since experiments2 on 35S have failed to repro-
duce the corresponding effect. In the following we
shall demonstrate that the surplus may be accounted
for by corrections arising from atomic effects going
beyond those considered in Ref. 1 and in recent pa-
pers3 5 on the same subject.

The qualitative basis for our correction to Simpson's
theoretical beta spectrum is as follows. The familiar
unscreened Coulomb enhancement in P decay con-
tains a factor I/[I —exp( —g) ), where g = 4me2/tu in
tritium decay, tt being the velocity of the emitted elec-
tron. This factor behaves approximately as I/( when

( & 1; but it becomes = 1 and nearly independent of
g, if g & 1. The value g = 1 corresponds to an electron
energy of 2 keV. For this reason, a neglect of minor
modifications of g can cause a spurious shift in the P
spectrum in the neighborhood of the energy where the
surplus of electrons was recorded. We shall therefore
carefully look into the effects of both Coulomb screen-
ing and small corrections in the detailed account of de-
csp cQcrgg.

One notable circumstance in Simpson's experiment
is that the beta spectrum was measured with a total-
absorption spectrometer instead of with a magnetic
spectrometer. The tritium was imbedded by ion im-
plantation into the sensitive region of a Si(Li) detector
which registered the number of ionizations and hence
the total energy release E= Q —E„within the detector
for the process 3H 3He+ e +v. The quantity

Q (-18.6 keV) is the energy difference between the
ground states of mother and daughter atoms, including
their chemical bindings. For simplicity, we disregard
the chemical bindings for the present; they constitute
only a minor correction.

Not all of the energy E is available to the outgoing
electron when the transition takes place at the nucleus.
In order to see this, it is convenient to introduce a

E"= E+ ez+ i'{0)—ez(0), (2)

or, for tritium, a reduction by 65.4 eV.
For a nucleus stripped of electrons, the beta transi-

tion probability is known accurately, involving a prod-
uct of phase-space factors and a Coulomb correction.
From this result let us make a preliminary evaluation
of the beta transition probability in the atomic decay.
As the energy of the outgoing beta particle is high, it
seems reasonable to identify the total energy and elec-
tron kinetic energy with Q and E", respectively. This
means that we replace the actual spectrum of final
states by an average. Since Q' —E'= Q —E, the beta
spectrum can then be estimated from the expression

N(E) dE=constx F(Z+1, W")

& p' ~(Q —E)'dE, (3)
where W'= mc2+ E', p' is the corresponding momen-
tum, and F the usual Fermi function. Figure 1 shows
the ratio of the expression (3) relative to the shape as-
sumed by Simpson. ' It will be seen that the modifica-
tion accounts for most of the upward bend below 2
keV, if one allows a normalization at 2.5 keV, which
corresponds to the maximum intensity of the spec-
trum.

At this point it is useful to examine in more detail
the validity of Eq. (3). Consider the general nonrela-
tivistic atomic Hamiltonian for an n-electron atom or
loA,

(4)

and note that a P particle at the origin would be in a

more basic Q value, Q", as that available in the P de-
cay of a nucleus stripped of electrons,

Q'= Q+e:+ t'(0) -ez(»,
where et'(0) is the (negative) total atomic energy of
the ground state of an atom with n electrons and nu-
clear charge Z, chemical bindings being disregarded.
Similarly the available electron energy is
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As follows from the WKB arguments of Rose and
from the Hulthen solutions to be discussed presently,
the quantity ( V, ) determines the screening correction
to beta decay when only the energy of the beta particle
is detected.

(ii) Mean excitation energy A.—fter the beta decay
the ion is deexcited. The mean energy release is, in
the sudden approximation,

0
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E (kev)

l
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potential V," from the electron cloud, where

BH)
V,"= X = — =Hg —Hg+). (5)I, r, t)Z +

The eigenvalues and eigenfunctions of the Hamiltoni-
an Hg are denoted eP(s) and )sz), where s labels the
quantum state in question. For the decay of a neutral
atom with nuclear charge Z and for the beta-decay en-
ergies of interest here, the sudden approximation can
be assumed to be valid. Consequently, the wave func-
tion for the final atomic state, which is not an energy
eigenstate, can be approximated by that of the initial
state ~Ozz). We shall now show how the successive
physical processes during and after the beta decay con-
tribute to the shifted energy Eq. (2).

(i) Screening correction In his .—classical paper,
Roses summarized his analysis to the effect that in
beta decay "the electron distribution is always such as
though the nucleus were not conscious of the screen-
ing and as though it emitted electrons into its immedi-
ate vicinity always in the same way; the only effect of
the screening is then to accelerate the electrons. . . ."
The correction is made simply by evaluating the elec-
tron phase-space factor and Coulomb correction with
the energy shifted back by a constant value taken to be
the electronic potential at the origin, Eq. (5). The ex-
pectation value is

a.,"(0)
( V, ) = (O,'i V,'i O,') =-

n=z
(6)

FIG. 1. Deviation in percent of the expression (3) rela-
tive to the theoretical shape assumed by Simpson. An ex-
planation of this deviation is given in connection with a sim-

ple approximate formula, Eq. (9). The curve in the inset
shows the same calculation, now normalized at 2.5 keV cor-
responding to the maximum of the tritium beta spectrum, A
change in the normalization point by +0.5 keV corresponds
to a vertical displacement of the curve by +0.065 lo.

=.,(0) —(Oz'I V,'I o,') —.,'+, (0)

= ——,
' [e2.g(0)ieZ2]„=z,

where the last expression is a good approximation for
large Z and is exact for Z=1. This is the result ob-
tained by Serber and Snyder. 7

(iii) Neutralization energy Th.e—final energy release
occurs when the ion is neutralized to the ground state

I=.;„(0)—.;+,'(0),

where we have neglected chemical binding as in Eq.
(2) and also the original binding of the captured elec-
tron. In this approximation the energy release (8) is
identical to the ionization potential.

When the three contributions Eqs. (6)-(8) are sub-
tracted from E one obtains exactly the definition [Eq.
(2)] of E', leading to the previous tentative result, Eq.
(3). In the case of the tritium decay, the three terms
are comparable in magnitude: ( V, ) =27.2 eV, (Ae)
=13.6 eV, and 1=24.6 eV.

Even though we are here primarily concerned with
the hydrogen decay, it may be worthwhile to note the
order of magnitude of the effects for a heavy atom, for
which the energy of the ground state may be
represented by the Thomas-Fermi estimate ezz(0)
= —CZ7i3, where C is 16-20 eV. Qne finds for
Z = 70 that I= 5-10 eV, (Aa) = 120 eV, and
( V, ) =12400 eV. Thus for heavy atoms the screen-
ing correction dominates completely. The screening
correction of 99.4 eV used by Simpson stems from the
use of a Thomas-Fermi estimate for a neutral atom
with Z=2.

Rose's screening correction, mentioned in (i), was
based on a WKB estimate of the wave function for the
emitted electron in a Coulomb potential with static
screening. The justification for use of a static potential
is that the velocity of the beta particle is high, so that
the distribution of the electron cloud remains essen-
tially unchanged during the passage of the beta parti-
cle, and so that other dynamic interaction effects
remain relatively small. Let us show that the same
screening correction is obtained in an exactly soluble
case of Coulomb screening, s s the Hulthen potential. 9
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This potential is defined as

V(r ) = —Z'e'q/(ee' 1—),

where q
' represents an effective range of the screen-

ing potential. The function V(r) has the property that
for small qr it approaches a pure Coulomb potential
minus a constant, Z'qez/2, which quantity represents
simply ( V, ) of the electronic charge distribution in
question. For large qr the function V(r) goes rapidly
to zero, thus representing a neutral atom. In the appli-
cation to beta decay we put Z'=Z+1 and choose
—,
' Z'e2q = ( V, ), which gives the correct potential en-

ergy at the origin. For heavier atoms (Z) 10), a
good approximation is e q= 3' CZl . Approximate
solutions of the Dirac equation with the Hulthen po-
tential appropriate for high Z have been discussed by
Buhring. '0

The fact that this potential has analytic solutions for
s waves has been used by Lindhard and Winthers for
deriving a closed expression for X, the Coulomb
enhancement at the origin. Following their calculation
with wave vector k and definitions X = k/q, b=2Z'/
aoq, Pi = ()i,2 —b)'l2, (=mb/X =2mZ'uo/u, and

(i =27r()i —Pi) =((I+ ( V, )/mu2),

we obtain X =(/[I —exp( —(i) ]. Because of the
phase-space factor u dE„;„, the effect of the screening
is to replace Ek;„by E„;„—( V, ) in the formula for the
P spectrum, in agreement with Rose's result. If we
consider the above solution at low P energies, we can
conclude that one must demand Xz )& bin order that
Rose's result remains valid, or Ek;„&)2( V, ). This
condition is fulfilled at all energies in Simpson's mea-
surements.

When we describe the process in terms of the total
energy release, we have to add the energy in Eqs. (7)
and (8), and arrive precisely at the formula (3).

If we can consider the displacement E' Eas small-,
we obtain a useful approximate formula for the rela-
tive correction to the spectrum, by expansion of the
Hulthen solution or by taking the logarithmic deriva-
tive of (3),

LLN(E) E' E-
N(E) 2E exp(() —1

'

where (=2m(Z+1)uo/u. Likewise, if we want to
consider the present correction to Simpson*s theoreti-
cal curve, we replace E E in (9) by 5—(E' —E)

= 99.4 —65.4 eV= 34 eV, and this gives a quite accu-
rate representation of the curve in Fig. l.

In conclusion then, the atomic effects considered so
far shift the energy scale of Simpson by 34 eV, thereby
accounting for perhaps two thirds of the upward bend.
An additional shift may arise from chemical bindings.
If a hydrogen atom is bound more strongly in Si than a
He atom, the shift is increased, and the same trend ob-
tains when the electron neutralizing the He atom is
originally bound in Si by the work function. In all,
these two effects may amount to 5-10 eV. It may be
mentioned that Haxton3 suggests that exchange
corrections can account for 15% of the total upward
bend. It should further be noted that the uncertainty
in conversion from detector response to total energy
can be important. Silicon detectors are not proven" to
be linear to better than 1% at these energies. There
may also be a separate deficiency in the conversion
into charge carrier pairs of the 13.6+ 24.6 eV available
as atomic excitation energy in helium. In total, there
seems to be no clear evidence of an upward bend in
the tritium spectrum.

The authors are indebted to John J. Simpson for dis-
cussions and for providing additional details about his
experiment and analysis, as well as J. U. Andersen for
valuable criticism of the manuscript.
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