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Chiral Hierarchies and Flavor-Changing Neutral Currents in Hypercolor
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l3ynamical chiral-symmetry breaking in asymptotically free theories with a slowly running cou-
pling is analyzed. ~hen the confinement scale A is much less than the cutoff M beyond which the
theory cannot be used in isolation, the dynamical mass X(p) starts from a value = A for momenta
p & A and falls slowly for a significant range p ) A. It then takes on the asymptotic form (lnp)'/p'
~here a & 1. In hypercolor theories this behavior generates sufficiently large fermion masses for a
higher value of M than naively expected. This in turn could allow for an adequate suppression of
flavor-changing neutral currents.
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The possibility that an asymptotically free gauge
theory is responsible for electroweak-symmetry break-
ing leads to some important questions about the
dynamics of chiral-symmetry breaking. Among these
is the question of hierarchy. If chiral symmetry is
spontaneously broken, the size of the chiral-
symmetry-breaking scale relative to the fundamental
scales of the theory is of great interest.

We shall consider an asymptotically free gauge
theory with a vectorlike coupling to fermions in some
representation of the gauge group. Explicit fermion
masses will be neglected so that the theory possesses a
global chiral symmetry. In this limit, there are two
dimensioned parameters that play a role in determina-
tion of the physical properties of the theory. The first
is the confinement scale A, the inverse size of the
gauge-singlet bound states. In QCD, this parameter is
about 200 MeV and the scale of spontaneous chiral-
symmetry breaking is about the same. 2 3

The other important scale is the cutoff M beyond
which the theory can no longer be used in isolation. In
an asymptotically free theory, nothing within the
theory itself dictates this scale; it can be arbitrarily
large. The cutoff is instead determined by the onset of
new physics, such as grand unification in the case of
QCD. In a dynamical theory of electroweak-symmetry
breaking such as hypercolor, the cutoff must be much
lower to allow for the existence of new interactions4
responsible for producing the masses of the known
fermions.

In this paper, the spontaneous breaking of chiral
symmetry will be discussed under the assumption that
A (&I The fermion self-energy function X(p) that
develops will have some nonzero value Xo at p =0 and
then fall monotonically as p ~.s There are then
two possible hierarchies to consider: X0/A and M/X0.

A hierarchy between A and Xo might develop if the
theory contains some small parameter. A possible ex-
ample is a gauge theory with the fermions in a higher
representation of the gauge group. 6 The interaction

strength responsible for chiral condensation is
C2(R)~i(q), where C2(R) is the quadratic Casimir
operator for representation R and o.(q) is the running
coupling. Chiral condensation should then set in when
C2(R)n(q) reaches a value of order unity, and if
C2(R) » 1, this might take place at a scale q well
beyond A. For all the gauge theory examples con-
sidered here, however, X0/A will be of order unity.
Our primary concern will be the M/X0 hierarchy.

In a hypercolor theory the cutoff M will represent
the onset of the new interactions responsible for both
the ordinary-fermion masses and possibly for flavor-
changing neutral currents (FCNC's). 7 s Our con-
clusion will be that for reasonable values of the
gauge-theory parameters, it is possible for M to be
large enough to suppress FCNC's adequately and yet
still give large enough values for the ordinary-fermion
masses. The focus of attention will be both on the size
of the hierarchy between X0 and M and on the
behavior of X(p) as a function of p. These two
features together determine the size of ordinary-
fermion masses in hypercolor theories.

In the perturbative regime, the renormalization-
group equation is

q 8~(q)/tlq = —(b b, b)o.'(q) +.—. . , (1)

(2)

The slowly running limit b —b, b ( 1 will be of special
interest to us. It must then be checked that the order-

where b represents the contribution of gauge fields and
hb is the contribution of whatever fermions are ap-
proximately massless at momentum q. With b, b ( b
to preserve asymptotic freedom, n(q) will continue to
increase with decreasing q according to Eq. (1) until
fermion condensation takes place. A variety of stud-
iesz 3 show that for any b —5b & 0, fermions in the R
representation of the gauge group will condense when
the coupling constant has grown to exceed a critical
value o., given by

3,C, (R )/~ =1.
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u (q) term in Eq. (1) does not enter with a larger
coefficient and overwhelm the leading term. The gap
equation governing fermion condensation has also
been studied with a fixed coupling constant. It is

again found that the coupling constant must be larger
than a, [Eq. (2)] if chiral condensation is to take
place.

For any value of b —b, b )0, there will thus exist
some scale p, at which u„—= a(p, ) is of order a, and at

which chiral condensation will be assumed to take
place. If lowest-order perturbation theory can be ap-

plied down to this scale, the running coupling at scales

q ~ p, will be given by

(3)u (q ) = a /[ I +a„(b —5 b) ln(q/p, ) ].
Since C2(R) is greater than one, it is quite possible
that Eq. (3) can be reliably used in the neighborhood
of condensation, or at least not far beyond it. For
p & p„, X(p) will be of order Xo. For p ) p, , X(p) will

begin its monotonic fall. The relative size of p, and Xo
is determined by the detailed dynamics in the momen-
tum range below p, . That p, cannot be much smaller
than Xo is clear. It will now also be argued that p. can-
not be large compared to Xo.

The perturbative gap equation is

~ d'k u(p, k)X(k) V" [g» —(p k»(—p —k)./(p k)']y"—" 4~' k'+X'(k) (p-k)' (4)

where u(p, k) represents the one-loop corrections. If p, were large compared to Xo, the region p, k —p, would be
controlled by a linearized version of the equation. Furthermore since then p, k && Xo, it can be seen that in Lan-
dau gauge, a(p, k) becomes a(p) for k « pand a(k) for p (( k with u(q) given by Eq. (3) both above and
well below p, . But then the solutions are well known (and described below) and do not exhibit a transition corre-
sponding to the onset of chiral-symmetry breaking. The nonlinearities are crucial for chiral-symmetry breaking.
Thus we will take p, = Xo( = A). '

To describe the region p ) Xo it is reasonable to neglect angular dependence in a (p, k) and to reduce Eq. (4) to
the following approximate one-dimensional form:

( )
1 i'kdk

( )
k X(k) ' kdk (k) k X(k)

2a, & p2 k2+X2(k) "p k2 k2+X2(k)
(5)

Analytical solutions will first be discussed and used to
estimate ordinary-fermion masses in hypercolor
theories. In these theories, dynamical breakdown of
chiral symmetry is communicated to the ordinary fer-
mions through the existence of effective four-fermion
couplings whose strength we take to be g~/M2. It will

be assumed that at momenta p —M, the four-fermion
vertex opens up into something that damps rapidly
with further increases in p. The ordinary-fermion
mass is then given approximately by

gM2 ~ pM
mf —— , ,„pdpX(p),

where N is the number of hyperfermions circulating in
the closed loop. The coupling strength g~2/4n 2 will be
taken to be of order unity.

The asymptotic form of X(p) is most easily derived
from Eq. (5) by writing the running coupling in its
conventional form

(q) = [(b —~b)ln(q/A )]-',

the physical confinement scale A ( = Xo
——p, ).

The solution X(p) corresponding to dynamical
chiral-symmetry breaking is then"

X p
Xo ln( p/A')
p' ln( p, /A')

for p )& p, , where A =1/a, (b —b, b). While this is
the conventional form used as input into Eq. (6), it is
important to stress that it is only correct asymptotical-
ly. A careful analysis of the gap equation shows that,
for Eq. (9) to describe X(p) correctly, a, (b Ab)—
x ln(p/p, ) must be large compared to unity.

To make this point in a rather different way, we re-
turn to Eq. (3). If a„(b—b b) is small compared to
unity, there will be a substantial range of momenta p
above p, for which a(p) =a„. For p in this range, the
integral in Eq. (5) will be dominated by k in the same
range, and the equation can then be written in the
linearized, constant-coupling, approximate form

where A' is related to p, by
—

&j(~-ab)a„
A =pe (8)

X( )
1 ap „I'i'k dkX(k), " k dkX(k)

p2 k'

The parameter A' is, in fact, what is conventionally
called the intrinsic scale of the gauge theory. Howev-
er, if (b —Ab)a„(( 1, A' will be much smaller than If we assume that a„ is larger than a, and yet small
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enough to justify the use of Eq. (5), the solution is

X2
X(p) = cos —1

A~

mf/Xo ~ NXO/M, (13)

where the second expression comes from setting the
cosine equal to unity in Eq. (11).

To convert these bounds into numerical estimates,
we take N=3 and X0= 800 GeV, '~ and impose the
condition M ~ 103 TeV in order adequately to
suppress the possible FCNC's. One then finds mf & 2

GeV, a number somewhat larger than typical lepton
and light-quark masses. The lower bound depends
sensitively on the gauge-theory parameters. With the
hyperfermions in the fundamental representation of
SU(3), we have C2(3) = —", , a, = m/4 = 0.8, and
b —b, b = (11——,

' N3)/2n, where N3 is the number of
fundamentals which must be at least 2. For this
minimal theory, then, b —Ab = 1.5. Finally we sup-
pose that a„=0.9. Then A =0.8, A'=0.5p„and
m&~3 MeV. In this case, the asymptotic solution
[Eq. (9)] takes over very quickly and therefore the ex-
act result is very close to this lower bound. This is
probably too small to account for the masses of most
of the ordinary fermions. Furthermore, the conver-
gence of the perturbation expansion is doubtful in this
case. The coefficient of the a3(q) term in Eq. (1) is
—0.97.

The above estimates and the question of conver-
gence are, however, quite sensitive to the gauge-
theory parameters. If a„(b—b, b) is small, the range
over which the more slowly falling solution [Eq. (11)]
is relevant will expand, and furthermore the lower
bound itself will increase. Suppose, for example, that
the gauge theory of interest is SU(3) and there are two
condensing fermions in the 6 representation. Then
N=6, C,(6)= —", , ,= /10, and b —Ab=(11

where 5 depends on the gauge-theory parameters. Be-
cause this solution can only be used when

a„(b —hb)ln(p/p ) && 1, the oscillations should not
be seen in the exact solution to Eq. (5).'2 They are in
fact not seen in the examples to be described here.

Thus, while X(p) eventually damps rather rapidly
with p [Eq. (9)], there could be a substantial range
over which it falls much less rapidly'3 [Eq. (11)]. For
any given set of gauge-theory parameters, it should be
possible to bound the true value of the fermion mass
[Eq. (6)] by use of these two expressions. A carrying
out of the integral in each case gives

'2
0 2 [ln(M/A)]"~'

Xo, M A [In(p/A')]"~

and

——', )/2m=0. 7. Taking a„—-0.4, we have A =4.5,
A'=0. 05p, , and then mf P 50 MeV. Thus the lower
bound is already far above the previous value. Furth-
ermore, the more slowly falling solution should persist
much longer than in the previous example. Thus the
actual numerical result for mf should be well above 50
MeV. The coefficient of the a3(q) term in Eq. (1) for
this theory is +0.82. Thus, at q = p, where a„——0.4,
the convergence appears to be reasonably good. The
opposite sign will in fact make the coupling run even
more slowly than in the above lowest-order estimate.
The effective value of b —hb, at q=p, , is =0.3.
This will increase the value of mf even more. Clearly
what is happening here is that as b —5 b decreases with

a„/a, roughly constant, X(p) drops more slowly over
a longer range15 giving rise to a larger value of mf
through Eq. (6).

We conclude by presenting the results of a numeri-
cal analysis for a somewhat more extreme set of
gauge-theory parameters without connecting them to a
specific theory. The full nonlinear integral equation
(5) will determine not only the form of X(p) for
Xo ( p & M but also the value of Xo relative to the
confinement scale A. Setting the scale of course in-
volves the use of Eq. (5) at momentum scales where it
should be relied on for nothing more than estimates to
within, say, a factor of 2. For this purpose, it will be
assumed that if A is less than p„' the coupling a(p)
will run more rapidly below p, increasing like"
a(q) =a~/[I+a„b ln(q/p, )] as q decreases. The
parameter b does not include the effect of the con-
densing fermions and should be of order unity. It is
this feature that will prevent a large hierarchy between
A and Xo in the example to be discussed and in the
sextet case described above. It will be assumed that at
q = A, a (q ) will have reached a value az & a, . Then
p, and a„will be determined in terms of az and A.
Both will in turn be related to A' through Eq. (8).
Below the scale A, the screening mechanism associat-
ed with confinement will, in effect, prevent further in-
crease in a(q) and we shall simply take a(q) to be
constant.

For the parameters to be discussed here, it will turn
out that A & p, . For other values of the parameters, it
can happen that p, & A so that there is no intermediate
region. It will always turn out, however, that p, /A —1.
It is only this order-of-magnitude result that we will
make use of in addressing the problem of FCNC's in
hypercolor theories.

We present numerical results for the case A'=3,
C2(R) =3, and b —kb=0. 2. Then a, ——0.35 and
A =14.3. We take a~=0.6 although similar results
would be found for smaller values of aA. For numeri-
cal work, the ultraviolet cutoff M= 103 TeV will be
imposed on Eq. (5). The numerical solution to Eq.
(5) then gives p, = 2XO ——1.4A, a„=0.5, and
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A'= 10 4XO. These values are quite insensitive to the
cutoff M && A. Higher-order corrections to the P
function will be neglected here. The small value of
b —b, b might, in fact, effectively arise partly from a
positive a3(q ) term. X(p) falls nearly as slowly as 1/p
initially and begins to drop like Eq. (9) as p approaches
the cutoff M The analytical estimates for the lower
and upper bounds, from Eqs. (12) and (13), respec-
tively, are

(14)
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where &0 = 800 GeV and M = 10' TeV. The numeri-
cal evaluation of Eq. (6) gives m&= 570 MeV. This is
typical of the kind of result that can be obtained for
ordinary-fermion masses. With, say, oi„&0.5 and
b —gb ( 0.4 (a range not difficult to obtain), fermion
masses in the range above 100 MeV are to be expect-
ed. If the cutoff M can be taken to be somewhat
belowa 103 TeV, these estimates can be increased even
more.

Another important phenomenological problem fac-
ing hypercolor theories is the presence of light
pseudo-Goldstone bosons. With low enough masses
they can be produced in existing accelerators and also
mediate FCNC's. The mechanism discussed in this
paper to raise fermion masses will also increase the
masses of pseudo-Goldstone bosons. These masses
will be estimated in a future paper.

In this paper we have studied dynamical chiral-
symmetry breaking in asymptotically free gauge
theories with a slowly running coupling. For a reason-
able range of gauge-theory parameters the dynamical
mass falls like I/p for a significant range of p above the
confinement scale, and then takes on the asymptotic
form 1/p2 times a large positive power of lnp. In hy-
percolor theories, this yields larger values for the
ordinary-fermion masses than might be expected
naively. Even for cutoffs of order 103 TeV ordinary
fermion masses above 100 MeV can be obtained. This
mechanism will also raise the masses of pseudo-
Goldstone bosons.
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