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Hadron mass calculations are carried out in lattice QCD on a 93x 18 lattice for flavor-nonsinglet
mesons and baryons. Dynamical quark loops are fully incorporated ~ith the Langevin technique.
The contribution of dynamical quark loops significantly modifies the hadron masses in lattice units,
but its dominant part can be absorbed into a shift of the coupling constant for the quark mass range
~e explored.
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Substantial progress has been made over the past
couple of years in developing techniques for incor-
porating dynamical quark loops in the simulation of
lattice QCD. t~ Especially promising seems to be the
Langevin method3 4 and its variants. 5 The main
motive for developing those methods is to calculate
hadron masses and other spectroscopic observables
without recourse to the quenched approximation. 6 In
this note we report our initial attempt in this direction
using the Langevin simulation. Working on a 93x18
lattice with the Wilson quark action, we have found
that, for the range of the hopping parameter we ex-
plored, most of the contribution from vacuum quark
loops, while it substantially modifies the hadron mass
values in lattice units, can be absorbed into a shift of
the coupling constant. We also discuss briefly various
technical questions that we encountered in applying
the Langevin procedure for hadron spectroscopic cal-
culations.

In applications of the Langevin procedure, the most
problematical point is the presence of a systematic
shift of the equilibrium distribution due to a finite
Langevin time step b, r. Particularly troublesome
is the shift involving the lattice Dirac operator D For
long-wavelength modes, this is typically of the order of
(Ar) A. ;„with A. ;„ the minimum eigenvalue of D and
n a positive integer depending on the scheme. Since
X;„decreases toward light-quark masses, a large con-
tribution from this term might seriously distort the
distribution of long-wavelength modes. In the
second-order scheme proposed in Ref. 3, the stochas-
tic differential equation contains an n = 2 piece, but an
equilibrium distribution correct to order [(b,r)D 2]2

is ensured. On the other hand in the scheme of Ref.
4, while only terms with n = 1 appear in the stochastic

equation, the equilibrium distribution is correct only
up to O(hr). A second-order Runge-Kutta algorithm
similar to that of Ref. 3 can be devised which removes
the integrable shifts of order hr. There remains, how-
ever, the nonintegrable shifts which is of order
(hr)A. 2. We have examined the magnitude of the
error induced by the shifts by a change of b, r, and
found that it is less severe with the scheme of Ref. 4
for light-quark masses. We have therefore employed
this algorithm, with the integrable shifts of order Ar
removed by a Runge-Kutta algorithm, for the simula-
tion reported here.

We have used the single-plaquette gauge action and
the Wilson quark action. The gauge group is SU(3)
and the number of flavors N&=2 with the same hop-
ping parameter K. We worked on a 93x 18 lattice with
periodic boundary conditions for the gauge and quark
variables. Choice of the gauge coupling p=6/g2 re-
quires some care; the quark loops generally render the
gauge configuration more ordered, and hence the lat-
tice size effectively shrinks toward light-quark masses.
The value of p should be such that the finite-size ef-
fect for the gauge configuration is insignificant even
then. We have decided on the value p=5.5 which is
above the near transition9 of the pure gauge sector for
heavy quarks. We did not observe any signature of
finite-size effect in our simulation except possibly at
the largest hopping parameter.

In order to generate equilibrated gauge configura-
tions, 5000 iterations were carried out at K=0.14,
0.15, 0.155, 0.16, and 0.162. The Langevin time step
was chosen to be It r = 0.01 on the basis of an analysis
of the minimum eigenvalue of the operator ysD.
(Another 6000 iterations with the pure gauge action
were also made to compare the quenched calculation
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with the full QCD case. ) The bulk of the computer
time is spent in solving the linear equation Dx=g
with q the quark white noise. For this purpose we
used the 1LUclt scheme developed by Oyanagi. to This
is a conjugate residual method combined with a
preconditioning of D and a further acceleration similar
to soR. On a 93 X 18 lattice a single conjugate residual
iteration takes 1.2 sec on a HITAC S810/10. The
iteration was continued until the residual

~
r ~

= lq —Dxl becomes less than unity. This corresponds
to 1'/0 accuracy in each element of the vector x. In-
creasing the accuracy does not change the expectation
value of observables beyond the statistical error. The
number of iterations needed to meet ~r ~ ( 1 increased
from about 6 at K = 0.14 to about 50 at K =0.162.

The equilibration of the gauge configuration was

monitored by measurement of both the hadron propa-
gators and the Wilson loops. We found that the initial
1500 iterations were almost enough for equilibration
and discarded the initial 2000 iterations. The average
was taken at every 100 iterations for hadron propaga-
tors. Examination of the autocorrelation with respect
to iterations of hadron propagators and Wilson loops
has shown that all these correlations decrease to 0.1 or
less after 300 to 500 iterations.

For the hadron operators we used the standard local
relativistic forms, ~= uysd, p= uyd, N= ('uCysd) u,

and 5 = ('uCyu) u. In the mass calculation with
dynamical quark loops, one has to bear in mind that
hadrons generally are no longer stable and the decays
are allowed. The largest hopping parameter we could
explore corresponds to m„a —0.4 and is above the
thresholds for p ~~ and b Nn The.refore all

hadrons are still stable and the standard procedure ap-

plies for extraction of hadron masses if the effect of
the continuum is small. We have thus fitted the prop-
agator data by a single exponential for baryons over
the temporal separation t= 6-9 and by a single hyper-
bolic cosine for mesons over t = 5 —13. The quality of
the fit was generally excellent.

Our data for hadron masses is exhibited in Fig. 1 for
m and in Fig. 2 for p, N, and b, , together with their
quenched values. We have estimated the error by di-
viding the propagator data into sets of ten and estimat-
ing the mass for each set. In Fig. 3 we present the
temporal Wilson loop up to 4X 4 as a function of K.

The data in Figs. 1-3 show that the effect of vacu-
um quark loops becomes quite sizable as K increases.
For instance the hadron masses at K —0.16 are re-
duced to about half of the quenched values. The criti-
cal hopping parameter K, obtained by a linear extrapo-
lation of m2 in 1/K decreases to K, =0.1635 +0.0012
from the quenched value K, =0.1844 + 0.0009. One
may also extrapolate m~ linearly in 1/K to find the
change in the lattice spacing a at the physical hopping
parameter K~h„, at which m~ = 135 MeV and m~ = 770
MeV. We find a ' = 1.34 GeV (0.15 fm) as compared
to the quenched value a ' = 0.99 GeV (0.20 fm). Our
fit of n and p masses versus hopping parameter for the
full QCD case is summarized as

(m a)2= (2.870 +0.145) (1/K —1/K, ),

m~a = (1.351 +0.110)(1/K —1/K, )

+ (0.575 + 0.045) .

A possible source of systematic error in our hadron
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FIG. 1. Pion mass squared m2 in lattice units as a func-
tion of 1/It. The open and filled circles represent the full
QCD and quenched results, respectively, at p = 5.S. The tri-
angles are the quenched results at a shifted p values (see
text).

FIG. 2. Rho meson mass rn~, nucleon mass m~, and delta
mass mq in lattice units as a function of 1/K. The meaning
of symbols is the same as in Fig. 1. Superscript q denotes
the quenched mass value.
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i 1 I TABLE I. The effective shift hp of the coupling constant
estimated by matching the temporal Wilson loop of full
QCD to that of the pure gauge sector.
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cA + 2xZ
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K =0.14

0.06 +0.01
0.06 +0.01
0.06 +0.01
0.11 +0.03

K =0.15

0.12 +0.01
0.12 +0.01
0.13 +0.01
0.15 +0.01

K =0.16

0.24 +0.01
0.24 +0.01
0.25 +0.01
0.25 +0.01

K =0.162

0.28 +0.01
0.28 +0.01
0.29 +0.01
0.30+0.01
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FIG. 3. Temporal Wilson loop as a function of K. The
open circles are the full QCD results. The filled circles at
K =0 and the triangles at K =0.15 and 0.16 represent the
pure gauge average at P = 5.5 and at shifted values P = 5.62
and 5.75.

+ (1.026 + 0.122),

maa = (1.895 +0.328) (1/K —1/K, )

+ (1.120 + 0.167),

and hence at K = K~h„„mdiv/m~ = 1.78 + 0.18, and
ma/m~=1. 09+0.03. These may be compared with
the quenched values mz/m~ =1.76 +0.10 and ma/
mN = 1.09 + 0.04.

An important quantitative question is how the effect
of quark loops manifests itself and how it modifies the
result of the quenched (valence) approximation. To
answer this question, we first examine the magnitude
of the effective shift hP of the coupling constant P
due to vacuum quark loops. Table I exhibits AP es-
timated by matching of our Wilson-loop data for the
sizes lx 1 to 4X4 to those of the pure-gauge data of
Barkai, Moriarty, and Rebbi. " The good agreement of
AP from various sizes of the Wilson loop suggests that
the dominant part of the loop effect may be absorbed

mass data is that the spatial size of the lattice 9X a
might not be large enough to contain a hadron inside
the lattice. From a study using different boundary
conditions, we found that such an error is smaller than
statistical for mesons, but it may be appreciable for
baryons. (This is not peculiar to full QCD and an er-
ror of similar magnitude is also seen in our quenched
results. ) If we extrapolate N and b, masses linearly in
1/Kwe find

mdiv a
= (2.004 + 0.253) (1/K —1/K, )

into a shift of the coupling P. (The value of the shift
AP at K=0.14 is almost expected from an effective
hopping-parameter expansion'2 to order K'2, but that
at K=0.16 is a factor 2 larger than is expected from
this expansion. ) To verify this point we made hadron
mass calculations in the quenched approximation at
K =0.16, P = 5.75 (b/3= 0.25) and at K = 0.15,
P = 5.62 (AP =0.12), and have shown the results in

Figs. 1-3. The agreement of the hadron masses
between the full and quenched (with shifted P) calcu-
lations is excellent. Possible systematic deviation is
not detected with our statistical accuracy. The chiral
order parameter (Qiii) was also found to agree be-
tween the two calculations. Therefore we conclude
that the main effect of the vacuum quark loops is ab-
sorbed into a shift of the coupling for the quark mass
range heavier than the decay thresholds for p nn.
and b, Nrr. This feature of the full QCD calculation
underlies the qualitative success of the quenched ap-
proximation'3 for the mass spectrum of flavor-
nonsinglet mesons and baryons.

At a more quantitative level, however, the fact that
the quenched calculation accurately reproduces the
result of full QCD means that the inclusion of the
vacuum-quark-loop effects cannot solve the problems
known in the quenched calculation; the problem of a
large m~/m~ ratio and a small 5 —N mass difference
still remains in our full QCD result. Hence these
problems are not ascribable to the quenched approxi-
mation but are more likely to come from the common
sources which affect the simulations done so far; in-
sufficient size of the lattice as compared to the size of
hadrons is one problem we have already mentioned.
The minimum momentum might be large compared to
the typical momentum with hadrons. The difficult of
carrying out the simulation for really small quark mass
necessitates an extrapolation which not only introduces
ambiguities but also might miss important information
such as opening of decay thresholds which occurs at
m„a —0.2 in our case. To give the simulation a real-
istic predictive po~er, one has to work on a larger lat-
tice at a ~eaker coupling and make a simulation at
much smaller quark mass values. These requirements
necessitate a further improvement of the computing
algorithms and a sizable increase of the computing
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power over what is available at present.
The numerical calculation was carried out on a Hl-

TAC S-810l10 at the National Laboratory for High
Energy Physics (KEK). We are greatly indebted to
S. Kabe, T. Kaneko, and R. Ogasawara for assistance
in operating the computer, and to the Theory Division
of KEK for warm hospitality. We are particularly
grateful to H. Sugawara and T. Yukawa for their strong
support for our work. We would also like to thank Y.
Iwasaki for informative discussions on the quenched
hadron-mass calculation.
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