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Measurement of the X0-A Transition Magnetic Moment
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The Xo-A transition magnetic moment has been measured to be ~p, (XO-A)
~
=1.59+0.05 +0.07

nuclear magnetons. The Xo lifetime is r(X ) = (0.76+0.05+0.07) &10 '9 see. The uncertainties
are statistical and systematic, respectively.

PACS numbers: 13.40.Fn, 14.20.Jn

Static moments of hyperons, measured by spin precession in a magnetic field' or transitions in exotic atoms,
provide insight into hadron structure and agree qualitatively with a nonrelativistic, s-wave, broken-SU(6) quark
model. 3 The moment for baryon B is the matrix element ttt, tt= (B(Hti4t (B), where H~t is the magnetic dipole
Hamiltonian. The Primakoff effect4 5 allows determination of the off-diagonal element pxa = (Xo~Hivtt ~A) from
the cross section for A Xo in the nuclear Coulomb field. By Tinvariance, ~ttt, x„~2 is proportional to the width for
Xo Ay or the inverse lifetime, since competing processes are negligible. The differential cross section is6

do/dq2=(@X'/p, iv)2(98 mb)(Z/82)2(pg/mp)(qtqt/q ) F (q ),

where Z is the atomic number of the target, pa is the
A momentum, qt = (mx —mA )/2pa and q&

= pA»n&XA
are the longitudinal and transverse momentum
transfers, q2=qt2+qt2, mA and mz are A and X
masses, and F(q2) = 1 is a form factor which includes
nuclear and atomic electron charge distributions and
nuclear absorption. The cross section is concentrated
at small q„ i.e. , at q, = qi ( —1 MeV/c for p =200
GeV/c), in contrast to strongly produced X with

(q, ) =300 MeV/c. This sharp forward peaking and
the Z2 dependence are distinctive features of Xo pro-
duced this way.

Since the resolving power in q, for the experiment
described here is —30 MeV/c, only the total cross
section can be measured. Models for F(q2) needed to
integrate Eq. (1) yield results that vary little from a
black sphere model. 6 In the present analysis, we use a
complete optical model including nuclear absorption of
incoming and outgoing hyperons and orbital electron
screening. s

In this experiment we determined the number of Xo

produced in various materials by a A beam, separated
Coulomb-produced Xo from strongly produced Xo,

and, by normalizing to the incident A flux, computed

the cross section, from which the transition moment
and Xo lifetime were calculated.

The experiment was done in the Fermilab Proton
Center beam line. 9'o A 400-GeV proton beam was
steered onto a I-mm2X46-mm-long lead target at the
entrance to a 7.3-m-long neutral-beam channel with a
3.5-T vertical field. The limiting aperture was a 2-
mm-diam hole in tungsten. Four uranium converters
in this hole, each three radiation lengths (3L„) thick,
halved the ratio of y to A in the beam and softened
the y-energy spectrum.

The neutral beam ((pa) = 200 GeV/c) was incident
on one of seven secondary or Primakoff (PK) targets
(Table I). The reaction sought was A+Z Xo+Z,
and the subsequent decay X Ay, in which the nu-
cleus remains nearly at rest and no charged particles
emerge. A counter surrounded the target to veto reac-
tions ~ith charged particles.

A spectrometer (Fig. 1) detected charged particles
from A decay giving a resolution o. = 2.1 MeV at the A
mass. The photon was detected by a lead-glass array
with resolutions o.E/E=0.01+0.11[E/(I GeV) ]
and tr = o.

~
= 1.5 cm in energy and position. Selected
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TABLE I. Cross-section analysis for Primakoff production of X .

No.
Target
z

q,
2 & 0.004 GeV2

W(X') A'(X'„„)' b
ger

All q2
Aj'(X )' 10 /V (A')/f (mb)

~ ~ ~

50
50
82
82

e ~ ~

0.032
0.151
0.574
0.999
0.147
1.002

9 +41
53 +33
53 +36

266 +60
621+65

887+76

6
6

20
18
36

8
36

0.0
0.26
0.64
0.93
0.96
0.76
0.97

~ ~ ~

15 +10
24 +27

271+66
701 +73
49+39

968 +86

1 ~ 255
0.965
1.046
3.044
3.993
1.453
5.044

0.068 +0.048
0.023 + 0.025

2.65 + 0.64
3.48 +0.36
8.17 + 6.45
9.22 +0.82

'Statistical uncertainty +2 on strongly produced X, .
g,@=(target L, )f (total L,).

'Corrected upward by —179o (target dependent) for q, resolution.

Approximately 1.2'/0 uncertainty. Typically, f=
5&2.

events consisted solely of one A and one y.9

The A trigger required no charged particles entering
or leaving the PK target, one positive and one negative
particle through the spectrometer, and a signal from
the scintillator, P, on the positive side. The X trigger
required a y in the lead glass: no signal from S7 and

S7, to veto charged particles, & 0.4 GeV deposited in
the first glass segment, and P 2.5 GeV in the second
segment. (Off-line cuts raised these to 1 and 5 GeV. )
A modified trigger, A'=A (Sq+Sq, ), included all

veto requirements of the X trigger. All X triggers and
a known fraction of A and A' triggers (typically „', )
were recorded.

Assumption of a A~ vertex in the PK target al-

lowed reconstruction of the A-y invariant mass, q„
and other quantities. Narrow structure at the Xo mass
and q,

2 = 0 exists, consistent with experimental resolu-
tion, e.g. , for target 7 in Fig. 2. The Ay background,

to be subtracted from the Xo mass peak, had two major
components: (1) noninteracting beam A's paired with
an accidental y; and (2):- Am 0, ~0 2y, with one
y undetected. A sample of events of type (1) came
from Monte Carlo (MC)-simulated beam A's paired
with single-y's lead-glass data. Type (2) events were
simulated by MC methods, with the observed momen-
tum spectrum of =0- Amo with both y's detected. To
avoid cutting the data at the Xo peak, a MC-generated
Xo event was included. These three distributions were
fitted to the data in a three-dimensional space of near-
ly independent variables: q,2; r2, the square of the dis-
tance between production target and the projected po-
sition of the daughter A; and M(Ay). Each back-
ground source had a distinctive distribution in this
space. With proper normalization, their sum account-
ed for most of the background. Since the Xo peak had
little weight in the fit, the method gave only a reliable
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FIG. 1. Plan view of the apparatus showing X Ay and A p n . Sl and S2 are incident-beam and target-surrounding
veto scintillators. C~-C7 are multiwire proportional chambers. DCI —DC3 are drift chambers. M2 and M3 are dipole magnets
with combined bending power of 1.57 GeV/c. P is scintillator in the expected proton position before the lead glass. The glass
intercepted y's which passed through M2-M3 and was segmented along i: —3L, followed by —12L,. The latter was stacked
brick1ike in six rows of blocks, each 10X 10 cm . A 4-block-wide hole in the midplane passed daughter protons. Hodoscope
S7, detected charged tracks, mainly m, entering the glass. A lead-scintillator sandwich, S3—S6, in combination with C4 detect-
ed and eliminated events with y's outside Mq's aperture. A 1.7-L, lead sheet, preceded by veto S7, assisted the early initiation
of the y shower.
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FIG. 2. Two-dimensional histograms of data and fit
described in the text for target 7 (Pb) vs q,

' and the invari-

ant mass M». The bands of shaded bins cross where the
Primakoff events are expected.
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FIG. 3. Histograms of the invariant mass MA„ for targets
3 (Be), 5 (Sn), and 7 (Pb) for qP (0.004 GeV2 after sub-
traction of the fitted non-X backgroond.

estimate for the dominant backgrounds, not the Xo

yield.
Background subtraction was done in two steps.

First, the fit described above was done over a broad
kinematic range, and normalized non-Xo distributions
subtracted from the data to yield the distributions
shown in Fig. 3 which display the Xo signal and residu-
al background. For q,

2 & 0.004 GeV2 the wings of the
M(Ay) distribution outside the Xo mass region were
fitted by a polynomial for the second step of the sub-
traction. Column 4 of Table I lists the number of
events in the mass peak above this baseline.

Strongly produced Xo were obtained from the data at

qP & 0.1 where they showed a mass peak, proportional
in strength to target absorption length, with small
( —20%) background, and free of any forward-peaked
component. These Xo's were consistent with a distri-
bution exp( —10q,2)." This was used to estimate, by
MC fits, the contribution of strongly produced Xo to
the low-q, ' mass peak [N(X„,) in Table I).

The possibility of sharply peaked, strong, coherent
production of X from the entire nucleus was con-
sidered by Dydak et ai. ' and ruled negligible at —15
GeV/c from Z2 and q,

' dependence. Even if such a
process accounted for their entire uranium cross sec-
tion, on extrapolation to lead at 200 GeV/c with the

assumption of p (LLI = 1) Regge exchange, '3 it would
account for & 7'/0 of our cross sections. We assume it
negligible.

The number of Xo was corrected for material near
the PK target (S,, S2, air, and a vacuum window) by
the factor gt, in Table I, and was raised by 17% to
correct for events lost to the q,2& 0.004 GeV2 cut.
The cross section is

fN(Xpx)
GpAOL N(A')ete2e3e4

A, L, and p are the atomic weight, length, and density
of the target, and Ao is Avogadro's number. N(Xptt)
is the number of Coulomb-produced Xo, and N(A')/f
(Table I) is the number of reconstructed A from the
A' trigger corrected for the fraction, f, recorded.
G = (1 —e ")/u corrects for veto of A-y events by S2
from 7 e+e in the target, where u=7L/9L, . Use
of N(A') for normalization cancels acceptances and
efficiencies except those involving a photon, viz. e, is
the geometric acceptance for 7, equal to 0.495 +0.004;
a2 is the software acceptance for a X after it passed all
the A' cuts, equal to 0.50+0.01; e3 is the correction
for veto of single-y events by S7 because of backscatter
from showers initiated in the lead converter, equal to
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0.75 +0.02; e4 is the glass trigger efficiency, equal to
0.88+0.03. The cross sections are listed in Table I.
Weighted averages for the three elements are
a. (Be) =0.033 +0.022 mb, a (Sn) =3.28 +0.31 mb,
and a (Pb) =9.20 + Q.81 mb„where the errors are sta-
tistical. These show the expected Zz dependence:
a. (Z)/Z = 2.1 + 1.4 p, b for Be; 1.31 + 0.13 p, b for Sn;
and 1.37+0.12 p.b for Pb. There is a 7'/o systematic
uncertainty from the uncertainties of the e's combined
in quadrature. Uncertainties from background sub-
traction were estimated by comparison with a different
procedure, viz. , a polynomial fit, unconstrained by a
physics model, to the mass distribution outside the Xo

peak for events with q,
2 & 0.004 GeV2. Results from

the polynomial method differed from those of the
method used by about ltr, and, thus, raised the total
systematic uncertainty to 10'/o.

Integrations of the bracketed part of Eq. (1) gave
(p, xa/p, N) . Deviations from the impulse approxima-
tion [F(q ) =1], primarily from nuclear absorption,
were 1.4'/o, 9.2%, and 11.9% for Be, Sn, and Pb,
respectively. The rms average for all targets is Ip, (Xo-
A) I

= (1.59+0.05 +0.07)piv. Since X Ay is—100'/o of its total rate, the Xo lifetime is given by
r

2 3
pxa 1 8A mp mz

v n(mzz —maz)'

1.929 51 x 10 '9 sec

This yields v=(0.76+0.05+0.07) x 10 '9 sec or,
equivalently, a width I' = 8.6 +0.6 + Q. 8 keV. In all
cases the statistical uncertainty is quoted first. There
is an additional uncertainty due to the Primakoff for-
malism itself estimateds'4 to be & 5'/o for r and I",
and, thus, & 2.5% for p, .

The only previous measurement'2 is Ip, (X -A) I

= (1.82+oOzt5s)P, /v. This contains a numerical aPProxi-
mation not compatible with present precision. We
have recalculated7 9 the moment from the directly
measured cross sections in Ref. 12 to yield the revised
result Ip (X'-A)

I
= (1.72+oo I97)p, tr. The weighted aver-

age of our result and the recalculated result is Ip, (Xo-
A) I

= (1.60+0.07)&,.
The naive quark model3 [with exact or broken

SU(6)] predicts that p, x„depends only on the mo-
ments of the u and d quarks: p, x~ = (I/~3)(pz p„)—,

One can substitute nucleon moments, (J3/5)
x (p, „—p, ~) = —1.63p, iv, or X moments,

pz„= (J3/4) (p,z
—p,z, ) = ( —1.52 + 0.02) p, ~

(Aguilar-Benitez et al."). Both agree with the data

within experimental uncertainties.
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