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Polymer Network of Fixed Topology: Renormalization, Exact Critical
Exponent y in Two Dimensions, and d = 4 —e
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I consider a connected self-avoiding polymer network made of identical long chains, with fixed
topology. Using ren'ormalization theory and conformal invariance, I conjecture in 20, and give in
d =4 —e, to order O(e), the exact value of its critical exponent y as a function of the topological
invariants. In 20, the exact result fits with recent numerical data for three- and four-leg stars by
Lipson et al.

PACS numbers: 05.70.Jk, 05.20.—y, 61.41.+e, 64.60,Fr

Critical exponents v and y, characterizing linear po-
lymer chains with excluded volume, i.e., self-avoiding
walks, are well known. ' The exact value v = —,

' in 2D
has been conjectured by Cardy and Hamber2 and
theoretically confirmed by Nienhuis, 3 who also conjec-
tured the exact value y = » . For animals, similar ex-
act exponents in 2D and 3D have been given by Parisi
and Sourlas. 4 The configuration number of po-
lydispersed branched polymers with specified topologies
and a fixed total length has also been studied numeri-
cally by Gaunt et ai.s The critical behavior of a dif-
ferent model, monodispersed branched polymers with
fixed topology and branches of equal length, is much
less known. (For uniform star polymers, see Miyake
and Freed6 and Lipson et al.7) In this Letter, I consid-
er a general self-avoiding network made of identical
long polymer chains linked together (Fig. 1). A con-
nected network 6 can be characterized by simple to-
pological numbers: the numbers I nt, L « I } of ver-
tices connecting L chains (L = 1 corresponds to exter-
nal legs). I give the exact value of the critical ex-
ponent governing the asymptotic number of configura-
tions raG of such a network in d=4 —e dimensions,
and in two dimensions, using results of conformal in-
variance. I conjecture in 2D the quite general result
(on a lattice) coG —N+ti"G (! ~), with

yG = ——,
' + ~'~ $ nL(2 —L)(9L+50), (1)

L ii1

whete, on a lattice, p, is the effective connectivity con-
stant for self-avoiding walks, ~ the total number of
chains, and 1 the common large length of the chains.
This result covers all possible topologies (on a lattice,
for L larger than the lattice connectivity constant, the
chains of an L vertex are tied together in a fixed
neighborhood). (1) is obtained by combining a new
extension of direct renormalization theory for poly-
mers, 8 9 Nienhuis's results3 for linear polymers, and a
very recent seminumerical conjecture by Saleur, 'o

which I adapt here, and which was itself obtained when

studying conjectures by Dotsenko and Fateev" in con-
formal invariance theory. Result (I) gives, for in-
stance, for L branch star polymers

y = {68+ 9L (3 —L) ]/64, (la)

and for a rectangular polymer network N x M (N and
M bounds),

y = —43NM/16+ 9(N+ M)/32+ 13/8. (lb)

2A/'= x LnL,
L&1

X = X —,'(L —2)nt +l.

(2)

I then describe the a = 1, . . . , ~ interacting chains by
generalizing Edwards's continuum model. ' The con-

FIG. 1. A network made of ~ =11 chains, / = S loops,
and vertices of type 1-5 with n&

= 1 (dangling chain), n3 = 4,
n4=1, n5=1.

I also give the corresponding value of yG for d=4 —e
to first order in e. For doing this, I study the direct
multiplicative renormalization of the partition function
of the network. For a general network G containing
nL L-leg vertices (L «1), the total numbers ~ of
chains, and & of loops read
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tinuous probability weight is

dr,
Pjv ( r } = exp ——$ ds

~s s
ds„ds'5"[r, (s) —r, (s')] .

aa =1
(4)

Here r, (s) is the configuration of chain a in 8 ", S is the Brownian area such that the mean-squared end-to-end
distance of a free Brownian chain is 0R2 =—dS. Thus S is an area, with the dimension of a squared iengrh On. a lat-
tice, S thus represents the number of iinks, or monomer number of each chain. I use the dimensioniess Zimm-
Yamakawa parameter

z = (27r) «2bS2

and the excluded volume, or self-avoiding limit, corresponds to z ~. Of course, (1) represents free interacting
chains. Since the chains are actually bound together inside network G „ I introduce the restricted partition function
Z(G ),

Z (G) = d(r}P& (r}5"(G ) „d(r}OP~(r} Sd[r, (0))
a=1

calculated in dimensional regularization 5(.G ) is sym-
bolic: It is the product of all necessary Sd distributions
in direct space, connecting the chains in the network,
plus one for fixing the origin. OP is the free weight of
Brownian chains, obtained from (4) for b=0. The
number b of 5d(r) distributions in 5d(G ) is

i.e., the total number of conditions at the vertices, plus

one. Hence, the canonical dimension of Z (G ) ob-

tained from (5) to (7) (exhibiting all variables in Z )
ls

Z (G, b, S,d) = S'~ 'i«'Z (G,z, d)-, (8)

For z=0, Z has a finite value. Therefore from (8),
one sees that 2 = —X d/2 is the Brownian value of
yG —1 in absence of excluded volume, and is entirely
determined by topological constraints defining the net-
work. On the contrary, for large z (excluded volume
limit) the dimensionless part Z ( G,z, d) scales like

(10)

where o.6 is a new critical exponent, which I calculate
below. Then, as a result of (8), (9), and (10), Z
scales like

where Z is a dimensionless quantity, which thus is a

function of z, Eq. (5), only (and of d, G ). Using now
(2) and (3), I find for the canonical dimension 2) of
Z in area units

& =—(JV —b, )d//2= —X d/2.

connectivity constant" is 1.)
I now generalize to arbitrary polymer netowrks the

direct renormalization method introduced in Ref. 8 for
simple linear polymer chains. The renormalized
length scale is given by the mean-squared end-to-end
distance R of a single polymer chain with excluded
volume. In the excluded volume S- ~, i.e., z
one has

R2 —S2v (12)

z, = z( s, )z -'i'( z, ). (13)

Now, we need for renormalizing any polymer net-
work an infinite set of new partition functions. These
are the partition functions Z (S L) of star polymers

made of an arbitrary number L ~ 1 of equal
branches (Fig. 2), corresponding to the constitutive
vertices of the network. These functions Z (S L) are
defined as in (6). Since stars 4' have no constitutive
loops, one has from (9), 2) g

=—0; hence from (8),
Z($ L) =—Z(S L) is dimensioniess. Note that the
star 4'i is nothing but a linear chain. I then define
(for topological convenience), for each L vertex,
L ~ 1, a reduced dimensionless partition function, or
renormalization factor

(S ~),

yo —1 —= ——,
' dX+ a.

G .

(Note that in dimensional regularization the "effective FKJ. 2. Star polymers g [, g q.
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For L = 1, Zi —= Z 'iz(& i). Note that all these dimen-
sionless quantities are functions only of z and d.

Now, for a general network G, described by (6), I
state that the renormalization is the following: Z ( G )
(8) can be rewritten as

Z (G,b, S,D)

(Z L)"'(~') "'"A(G,z, d). (14)
L&1

This equation is simple to understand: A (dimension-
less) renormalization factor Z L is associated with each
constitutive L vertex, and the physical (renormalized)
area R2 is substituted to the (bare) Brownian area S.
Then I state that in the excluded volume limit z- ~
of very long chains. A reaches a finite fixed point value
(calculable in e=4 —d expansion). Details of a field-
theoretic proof of (14) will be given elsewhere. Fol-
lowing Ref. 8, partition function Z (G ) can be
mapped, by multiple Laplace transforms, onto the

correlation function (1IL~i(@L)"L) of ($ )d field
theory, with X different n-component fields, in the
limit n 0 and a O(A'x n) symmetry in the interac-
tion term. Then the renormalization factors Z t corre-
spond essentially to those of the composite operators
@z of L different fields at the same point. Now vertex
factor Z t (13) scales for z ~ like

(15)

~6=
L&1

(16b)

Let us first consider the Wilson-Fisher d = 4 —e ex-
pansion. I have calculated Z (& L,z, d), using dimen-
sional regularization. We find to first order (Fig. 3)

where &L is a new (irreducible) critical exponent, as-
sociated with the L-leg vertex. Thus, using (11) to
(15) we find the basic new hyperscaling relations

(16a)

Z($ L,z e) = I+ zI (2/e) [L ——,
' L(L —1)j+ O(1) I+ O(z ).

Therefore Zt (15) equals

Z L (z, e) = 1+z/e(2 —L)L+. . . ,

and the critical index o.
L is obtained ass 9

crt, = —zlnZ L/Bz= (2 —L)(L/2)z+ O(z ) = (2 —L)(L/2)zq+ O(zq2),

(i8)

(i9)

o L
= (2 —L) L e/16+ O(ez). (20)

Therefore, using also' 2v —1=~/8+O(e2), we find
from (16b)

$ n, —,
' (4 —L') —2 + O(e'), (21)

where we substituted to z the dimensionally renormal-
ized Zimm-Yamakawa parameter zing, defined in Ref. 9
in terms of which o t [zest, e I is finite to all orders in zti,
e, and I/e pole free. Its fixed point value for z
is9

zing =e/8+ O(ez). Thus (19) reads in the excluded
volume limit

chains on a lattice, tied together at their extremities
(Fig. 4) and having a fixed total length i: ~0 —p,

'
(20-9L2) 32i it . I have to adapt this result to the case

where all chain lengths are fixed (and equal). The
number co of configurations of L attached chains with
fixed lengths i is smaller than the number i0 of L near-
ly identical chains li, . . . , lL, with total length I, by a
simple constraint factor

L

a=1 a=1

where I used (3). For stars, this agrees exactly with
O(e) results of Ref. 5.

Let us now consider two dimensions The valu.es of y
and v have been conjectured by Nienhuis to be

43 3
V =— (22)

Quite recently, by studying conjectures of Dotsenko
and Fateev" on magnetic and ihermai operators in
critical conformal invariant theories in 2D, and from
numerical calculations on 2D strips, Saleur' has given
a conjecture for the number cu of self-avoiding confi-
gurations of L nearly identical polydisperse polymer

FIG. 3. First-order diagrams contributing io Z (& i.).
The dotted lines corrcspond to interaction b.
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can be seen in the critical exponent o G (16b) which is
the excluded volume part of yG

—1. Insertion of (3)
and (24) into (16b) gives in 2D

(25)

FIG. 4. The "watermelon" network of I=polymer chains
attached by their extremities.

Therefore for the configuration of Fig. 4 with indivi-
dual fixed lengths, I obtain the exact index

Comparing (25) with (21) shows that the polynomial
dependence on L is exactly the same in d=2 and
d = 4 —e, to O(a). Furthermore, for a = 2, (21) is ex-
tremely close to (25): The only difference is a coeffi-
cient —, approximating the exact +4.

Note added. —The last numerical results on star po-
lymers by Wilkinson er al. t4 agree remarkably with for-
mula (la).

7 r
—1= (20 —9L2)/32 —(L —1). (23)

[For i=1, (23) agrees with Nienhuis's (22).] Identi-
fying (23) with (16a) for n&=2, n&

=0 (L'&L),
X = L —1, and using (3) and (22) we find the key
result

o.t = (2 —L)(9L+2)/64.

By insertion of (24) into (16a), use of (3) and (22)
gives exactly (1), Q.E.D. Let me stress that yG (1) is
valid in 2D for all network topology respecting the
planarity condition. '3

7 G (1) does not depend on the
irrelevant number n2 of two-leg vertices. For a simple
closed loop &, nq=0, V L ~1; hence
=1—t d. Usually, one gives y&

= —t d = ——,'. This
is simple because one then divides by the circular rep-
tation symmetry factor S ', not taken into account
here for a general (nonsymmetrical) network. It is
also very interesting to consider (la) for the L-arm
star 4' q in 2D. For L = 3, 4, this gives

yg, = 1 —,', = 1.0625, and 7 g, = —,
' . This can be seen to

be in excellent agreement with the recent numerical
results by Lipson et al.~ on 2D lattices. These authors
did not know the exact values, but I think that their
results (see triangular lattices in Fig. 1 of Ref. 7) actu-
ally converge to the above values. A last striking fact
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