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Observation of Berry’s Topological Phase by Use of an Optical Fiber
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We report the first experimental verification of Berry’s topological phase. The key element in the
experiment was a single-mode, helically wound optical fiber, inside which a photon of a given helic-
ity could be adiabatically transported around a closed path in momentum space. The experiment
confirmed at the classical level that the angle of rotation of linearly polarized light in this fiber gives
a direct measure of Berry’s phase. The topological nature of this effect was also verified, i.e., the
rotation was found to be independent of deformations of fiber path if the solid angle of the path in

momentum space stayed constant.

PACS numbers: 03.65.Bz, 42.10.Nh, 42.81.Fr

Recently, Chiao and Wu! have pointed out some
novel and observable quantum interference phenome-
na which arise from Berry’s phase? for the photon.
This phase, which is similar in many respects to the
Aharonov-Bohm phase, has recently appeared theoret-
ically in many fields of physics, from high-energy
physics to low (e.g., from chiral anomalies in gauge
field theories to a treatment of the Born-Oppenheimer
approximation).> Hence it is important to look for
Berry’s phase experimentally. The optical effects
predicted by Chiao and Wu allow such observations.
The Bose nature of the photon permits optical mani-
festations of Berry’s phase on a classical, macroscopic
level, unlike the case of Fermi particles. Thus an
intuitive understanding of this general phase factor
emerges. One of their predictions is the appearance
of an effective optical activity of a helically wound,
single-mode optical fiber. They showed that the angle
of rotation of linearly polarized light propagating down
the fiber is a direct measure of Berry’s phase. This op-
tical activity does not come from a local elasto-optic
effect caused by torsional stress,* but rather arises
solely from the overall geometry of the path taken by
the light, and hence is a global topological effect.
Thus this effect is independent of the detailed material
properties of the fiber.

In this Letter, we report an experimental study of
the optical activity arising from Berry’s phase in a
single-mode fiber. To explore the topological nature
of this effect, we compare the results from complex
paths of nonuniform helices with those from simple
uniform helices. We find good agreement between the
measured rotation angles and those predicted by
Berry’s phase in all cases. These observations confirm
the topological nature of this phase, which is one of its
most significant properties. The rotation angle is
found to be independent of the path of the fiber in
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configuration space as long as the solid angle subtend-
ed by the path in momentum space stays constant. In
the special case of planar paths, no significant optical
rotation is observed independent of the paths’s com-
plexity. Hence the light is able to distinguish between
two and three spatial dimensions. This again confirms
the topological nature of the effect.

Connection of earlier observations of optical activity
in fibers,>® with Berry’s phase and its quantal, global
topological properties went unnoticed. The observa-
tion of polarization rotation ascribed to geometrical ef-
fects was previously reported by Ross,” who used a
single-mode fiber wound in a uniform helix, and by
Varnham, Birch, and Payne,® who fabricated a fiber
with a core wound into a uniform helix. Both papers
studied the case where the helix was uniform, i.e.,
with a constant pitch. The observations were in good
agreement with a classical analysis,>® which treated
the rotation of the plane of polarization locally at each
point along the fiber for the case of a uniform helix by
use of differential geometry.

The experimental setup is schematically shown in
Fig. 1(a). A He-Ne laser and a pair of linear polariz-
ers, one at the input, the other at the output end of the
fiber, were used to measure the rotation of the plane
of polarization in a 180-cm-long single-mode fiber.
The fiber had a conventional step-index—type profile
with a relative core-cladding index difference of 0.6%,
and a core diameter of 2.6 um. Its cladding index of
refraction was 1.45 and its cladding diameter was 70
pum, which was coated with uv-curable acrylate of
thickness — 100 um. The fiber was first inserted
loosely in a Teflon sleeve in the form of a 175-cm-long
tube, to minimize any torsional stress on the fiber dur-
ing winding. The tube was wound helically with the
output end of the fiber free to rotate. Thus care was
taken not to introduce any torsional stress which might
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FIG. 1. (a) Experimental setup; (b) geometry used to cal-
culate the solid angle in momentum space of a nonuniformly
wound fiber on a cylinder.

result in a rotation of the plane of polarization due to
the elasto-optic effect.” Also, we found that the fiber
showed a negligibly small linear birefringence as long
as the fiber was wound smoothly on a large enough di-
ameter.® In order to form a closed path in momentum
or k space,! the propagation directions of the input and
output of the fiber were kept identical. In the first ex-
periment, the fiber was wound into a uniform helix.
The pitch angle of the helix 6, i.e., the angle between
the local waveguide axis and the axis of the helix, was
varied by attaching the Teflon sleeve along the outside
perimeter of a spring, which was stretched from a
tightly coiled configuration into a straight line. In this
way, the pitch length p was varied, as was the radius r
of the helix, but the fiber length s = [p2+ (27 r)?]Y/2,
i.e., the arc length of the helix, was kept constant.
The range of p was from 30 to 175 cm. Hence the di-
ameter of the helix ranged from 55 cm down to zero.
By geometry, cosf=p/s [see Fig. 1(b)]. The solid an-
gle in momentum space (2 (C) spanned by the fiber’s
closed path C in this space, in this case a circle, is
27 (1—cos®). Berry’s phase, y(C)=—aQ(C),! for
a single-turn uniform helix is therefore

y(C)=—-2mo(1—p/s), 1)

where o= *1 is the helicity quantum number of the
photon. The quantum theory! predicts that — v+ (C),
where y , (C) is Berry’s phase for o= +1, is the an-
gle ® of rotation of linear polarization. The classical
theory™>® predicts an angle of optical rotation in agree-
ment with this quantum result.
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FIG. 2. (a) The solid line represents the path of the fiber
on an unwrapped cylinder surface for nonuniform helices
(squares in Figs. 3 and 4) with one harmonic of deformation
[Eq. (5) with 4 =1.2], and the dashed line a uniform helix
(A =0); (b) the path for a nonuniform helix (triangle in
Figs. 3 and 4) with three harmonics of deformation [Eq.

(6)1.

In the second experiment, the fiber was wound onto
a cylinder of a fixed radius to form a nonuniform
helix. The procedure was first to wrap a piece of paper
with a computer generated curve onto the bare
cylinder. Then the Teflon sleeve with the fiber inside
was laid on top of this curve. (To allow for variations
in fiber path while using a fiber of fixed length, we left
a straight section of fiber path at the output end, which
had a variable length.) The solid angle in momentum
space could then be calculated from the curve by
unwrapping the paper onto a plane [see Figs. 1(b) and
2]. Let the horizontal axis of the paper, which was
aligned with respect to the axis of the cylinder, be the z
axis. Then the vertical axis represents r¢, where r is
the radius of the cylinder and ¢ =tan~'(y/x) is the
azimuthal angle of a point on the curve with coordi-
nates (r¢,z). The local pitch angle from Fig. 1(b),

0(¢p)=tan"'(r de/dz), 2

characterizes the tangent to the curve followed by the
fiber, and represents the angle between the local
waveguide and the helix axes. In momentum space,
6(p +m/2) traces out a closed curve C corresponding
to the fiber path on the surface of a sphere. The solid
angle subtended by C with respect to the center of the
sphere is given by

(0= 11— coso(4) 1. 3)
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Berry’s phase is then given by'
y(C)=—-0cQ(C). 4)

One sees that Eq. (1) is a special case of Eqgs. (3) and
(4), when 6 is a constant.

Figure 3 shows the measured rotation angle ©®
versus the calculated solid angle Q (C). The open cir-
cles represent the case of uniform helices, and the
squares and the triangle represent nonuniform helices.
The solid circles represent arbitrary planar curves
formed by laying the fiber on a flat surface. The solid
circle at 2 =0 corresponds to a snake-like path, and
the one at Q =2« to a loop with a crossing. The
squares represent helices with a single harmonic of de-
formation,

z/r=(p/27r)¢ + A sing, 5)

where p =42.6 cm and r = 14.2 cm, and A ranges from
0 to 1.5 in steps of 0.3 [see Fig. 2(a)]l. The triangle
represents a helix with three harmonics of deforma-
tion,

z/r=(p/2mr)¢+ A sing + A,sin2¢ + A;sin3¢,

(6)

where 4= A4,=A4;=0.2 [see Fig. 2(b)].
By inspection of Fig. 3, one sees that in all cases the
measured rotations agree with the calculated magni-
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FIG. 3. Measured angle of rotation of linearly polarized
light vs calculated solid angle in momentum space, Eq. (3).
Open circles represent the data for uniform helices; squares
and triangle represent nonuniform helices (see Fig. 2); solid
circles represent arbitrary planar paths. The solid line is the
theoretical prediction based on Berry’s phase, Eq. (4).

tude of Berry’s phase |y + (C)| [see Eq. (4)] indicated
by the solid line. The sense of the rotation, when one
looks into the output end of the fiber, was found to be
clockwise (i.e., dextrorotatory) for a left-handed helix,
in agreement with theoretical prediction.!

The typical vertical error bar in Fig. 3 represents the
dominant systematic error in this experiment, namely
residual optical rotation due to torsional stress in the
fiber. In separate auxiliary experiments, the optical ro-
tation in a deliberately torsionally stressed fiber was
measured, and also the residual strain, i.e., the twist of
the fiber due to its rubbing against the walls of the
Teflon sleeve, was measured microscopically near its
free end. From these measurements, an estimate of
size of the vertical error bar was determined. The typi-
cal horizontal error bar represents the uncertainty in
the determination of the solid angle Q (C) due to the
fact that the fiber was free to roam within the 5-mm
inner diameter of the Teflon tube. Random errors due
to photon statistics were negligible compared with
these systematic errors.

To check quantitatively the topological nature of the
optical rotation, we replot the data in Fig. 3, as the
slope A®/AQ of a line joining a datum point with the
origin versus a deformation parameter D, onto Fig. 4.
We define D as follows:

2m e
D=f0 [1—cosb(d) — Q(C)/2m12dd} /Q(C).

)

Here D is a measure of the root mean square deviation
of the fiber path from a uniform helix. By inspection
of Fig. 4, one arrives at the conclusion that the specific
optical rotation A®/AQ is in all cases independent of
the deformation as quantified by the parameter D, and
is therefore independent of geometry. This confirms
the topological nature of Berry’s phase. Since A®/AQ
is a direct measure of o,' one can view Fig. 4 as exper-
imental evidence for the quantization of the ‘‘topologi-
cal charge’’ of the system, which in this case is the he-
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FIG. 4. The slopes AO®/AQ of the points in Fig. 3 vs the
deformation parameter D, Eq. (7), for nonuniform helices
(squares and triangle). The open circle represents the aver-
age for all uniform helices. The dashed line represents the
theoretical prediction.
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licity of the photon, a relativistic quantum number.

The experiments reported here are essentially at the
classical level, since we used an enormous number of
photons in a single coherent state. Therefore at this
point we can only say that we have verified the ex-
istence of Berry’s phase and its topological properties
at the classical level. These observations do support,
however, the statement that these effects are ‘‘topo-
logical features of classical Maxwell theory which orig-
inate at the quantum level, but survive the corre-
spondence-principle limit (# — 0) into the classical
level.””*? It would be interesting to verify Berry’s
phase experimentally also at the quantum level, where
fluctuations due to individual photons propagating
inside the fiber appear. Then the truly quantum me-
chanical nature of this phase will become evident.

The authors thank Y. S. Wu for valuable discus-
sions.

Note added.— After we submitted this paper, another
paper by G. Delacrétaz et al. [Phys. Rev. Lett. 56,
2598 (1986)] was submitted and published, which in-
dependently verified the existence of Berry’s phase ex-
perimentally in another context (i.e., the molecular
system Na;).

(@)Present address: Raychem Corporation, Menlo Park,
CA 94025.
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"The straight, unstressed fiber possessed, however, an in-
trinsic circular birefringence due to the fiber drawing pro-
cess, which produced an optical rotation of 0.436 rad/m.
This number was checked by cutting the fiber into 30-cm
sections. The rotation angles reported in the rest of this pa-
per were measured with respect to the output polarization of
the straight fiber as the zero reference. Also, «=0.301
rad/m in Eq. (10) of Ref. 1.

8The magnitude of the linear birefringence n, —n, was
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