
VoLUME 57, NUMaER 8 PHYSICAL REVIEW LETTERS 25 AUoUsT 1986
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Recently, Berry recognized in quantum mechanics a topological phase factor arising from the adi-
abatic transport of a system around a closed circuit, which is essentially the Aharonov-Bohm effect
in parameter space. Here we consider manifestations of this phase factor for a photon in a state of
adiabatically invariant helicity. An interferometer is suggested to see this phase. Also, an effective
optical activity for a helical optical fiber is predicted. These effects emerge on a classical level as
topological features of Maxwell's theory.
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Quantum interference effects in the presence of top-
ologically nontrivial electromagnetic fields often lead
to spectacular phenomena in physics. Notable exam-
ples include the Aharonov-Bohm effect, ' the Dirac
monopole and the quantization of charge, 2 and the
quantization of flux in superconductivity. 3 As Wu and
Yang4 have emphasized, at the heart of these
phenomena lies the nonintegrable phase factor
exp(ie f&Atdx), which multiplies the wave function
of the system after its transport around a closed curve
C in the presence of a vector potential At in ordinary
SPQc8'.

Recently it has been recognized that in quantum
mechanics there exists another analogous topological
phase factor, namely Berry's phase. 5 This noninte-
grable phase factor arises from the adiabatic transport
of a system around a closed path in parameter space,
which, according to Simon, can be viewed as parallel
transport in the presence of a gauge field in such
spaces. This phase factor is amazingly universal. It
has appeared theoretically in many contexts, 7 e.g. , a
treatment of the Born-Oppenheimer approximation, 8 9

fractional statistics, '0" and anomalies in gauge field
theories. '2 's Its domain of applicability thus apparent-
ly ranges from high-energy physics to low. Clearly it is
important to look for this abstract phase factor experi-
mentally. Therefore we would like to explore here
some physical manifestations, more specifically, opti-
cal manifestations, of this phase factor.

A striking prediction of Berry is that any spin-1 par-
ticle, a boson, can acquire a phase factor of —1 under
certain rotations which return it to its original state
classically. For example, the direction of a magnetic
field can be slowly rotated through a cone of apex an-
gle 120', so that the spin's magnetic moment follows it
adiabatically. After the magnetic field has returned to
its initial direction, the spin's wave function has

changed sign relative to that of an identical spin which
has remained in an unchanged magnetic field. This
sign change can manifest itself in the destructive in-
terference between two beams of spins. Note the
dependence of this phase on the spin's history, i.e., its
nonintegrability.

The photon is a massless spin-1 boson. Its helicity
s k, where s is the spin operator and k is the direction
of its propagation, can only be +1 or —l. It is natural
to ask whether the photon can acquire a Berry phase or
not. In principle we can replace in the above example
the direction of the magnetic field, (B„,B„,B,), to
which the photon does not couple, by the direction of
the propagation of the photon, (k„,k, k, ), which can
be affected by slowly varying changes in the external
environment (e.g. , in the index of refraction), as the
slowly varying parameters. Here parameter space is
momentum space, or equivalently, reciprocal space. In
contrast to the case of a massive spin-1 boson, the spin
of the photon will always follow the direction of k,
since the masslessness of the photon guarantees that
its helicity will remain either +1 or —1, if there is
nothing to change the sign of the helicity. Thus the
helicity quantum number is an adiabatic invariant.

We discuss below three cases in which k can change
adiabatically: (1) when circularly polarized light prop-
agates down a helically wound optical fiber, (2) when
linear polarized light propagates down such a fiber, and
(3) when microwaves propagate down a helically
wound circular waveguide. In all three cases, it is re-
quired experimentally that there should be no sharp
kinks (on the scale of a wavelength) in the fiber or
waveguide, so that the helicity of the photon does not
flip sign as it propagates. Also, we neglect any linear
birefringence in the medium, and any ellipticity in the
cross-sectional shape of the waveguide, which can
cause conversion between states of opposite helicity.
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We assume that the light propagates inside the twist-

ing waveguide in a single mode. Let us parametrize its

path by ~, the optical path length. Then the adiabatic
invariance of the helicity of the photon implies that at
each point r, the photon's spin state ~k(r), cr) satis-
fies

s k(r) ~k(r), o-) = o lk(r), o ),
~here k(r) is the photon's propagation direction at r
and o = +1 is its helicity quantum number, which is

independent of r F.ormally, this is identical to the
problem considered by Berry for a spin s in an adiabat-
ically changing magnetic field B(t),

gs B(t) IB(t),m, ) = E~B(t),m, ),
where g is related to the gyromagnetic ratio and m, is
the component of the spin along the direction of B(t).
Here E is the energy eigenvalue, which is constant for
the case where the magnetic field changes direction
only, but is constant in magnitude. As the magnetic
field is adiabatically changed, the parameters B(t)
trace out a closed curve Con the surface of a sphere of
radius B in parameter space (B„,B~,B,). After one
round trip in parameter space, the system must come
back to its original state, apart from a dynamical phase
factor exp( —iEt), which we temporarily ignore, and a
geometrical phase factor exp[iy(C)], where y(C) is
Berry's phase. Berry showed that

y(C) = —m, n(C),
where 0 (C) is the solid angle subtended by the curve
C with respect to the origin B= Q. The right-hand side
of Eq. (3) can be interpreted as the "magnetic flux" in
parameter space through C in the presence of a "mono-
pole" of strength —m, at the origin, which is a point
of degeneracy. For the special case when C is a circle
which subtends a cone with an apex at the origin with

apex semiangle 8,

y(C) = —2n m, (1 —cos8). (4)

For 8 = 60' and m, = 1, one obtains y = —m, and thus
the remarkable result that even bosons can acquire a

phase factor of —1 after an azimuthal rotation of 360',
which classically restores the original state of the sys-

tem. As noted above, this is an observable phase fac-
tor, which can cause destructive interference.

Now we extend these results to the photon. As it

propagates smoothly down a helical waveguide, k is
constrained to remain parallel to the local axis of this
waveguide, since the momentum of the photon is in
this direction. Since its helicity is adiabatically con-
served, s is also constrained to remain parallel to the
local axis of the waveguide. Hence the geometry of a
helical path of a waveguide with a unity winding
number constrains k, and hence s, to trace out a loop
C on the surface of a sphere in parameter space

(k„,k, k, ). As a result of radial symmetry, the origin
k=0 of this space is singular. Berry's argument leads
to a phase similar to that of Eq. (3).

y(C) = —n(C),
where 0 (C) is the solid angle subtended by the loop
C with respect to k=0. In the special case of a uni-
form helix, Cis a circle and

0 (C) = 2miV(1 —cos8),

where iVis the winding number of the helix, and 0 is
the angle between the local waveguide axis and the
axis of the helix, i.e., the pitch angle of the helix.
Again, the phase y(C) can be viewed as the result of
parallel transport along C in the presence of a Dirac
monopole with strength —o. at the origin k = 0.

The phase given by Eq. (5) can be seen in the fol-
lowing interference experiment: A circularly polarized
laser beam is injected into a single input optical fiber.
This fiber in turn couples an equal amount of the light
into two helically wound optical fibers, each having N
turns, but in contrary senses, which are adjusted to
have equal optical path lengths. These two helices
form the two arms of the interferometer. (With bal-
anced arms, spurious effects, e.g. , local optical activity
inside the medium, can be canceled out. ) The fibers
are then brought together and coupled into a single
output optical fiber, where interference occurs. The
predicted interference pattern is

I = 10 cos2[27r iV(1 —cos8) ],

for uniform windings.
Next, let us inject a linearly polarized laser beam

into a single helically wound optical fiber. Let the ini-
tial state be represented by

lx) =2-'t'(I+) +
I

—»,
where

~

+ ) are the eigenstates of o = + l. After prop-
agation through the helix, the final state at the output
of the fiber, if we ignore for the moment dynamical
phase factors, is

fx') =2 't'[exp(iy+) f+) + exp( —iy~) [
—) ].

Here y+ is Berry's phase for o.=+1. Therefore
l(xlx') I'=cos'y, . By Malus's law, this implies that
the plane of polarization has been rotated by an angle
which is equal to y+. The sense of this rotation, when
one looks into the output end of the fiber, is clockwise
(i.e., dextrorotatory) for a left-handed helix. This al-

lows a direct measurement of Berry's phase. It also
gives a direct physical interpretation of this phase,
namely, that it is an angle of optical rotation.

These effects are topological in nature. To see this,
recall that there is a monopole at k= 0.'6 The circle C
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associated with the helix can be continuously de-
formed into a closed curve C' of any shape without
changing Berry's phase, provided that the solid angle
subtended by C' with respect to the monopole is un-
changed. Furthermore, the diameter of the circular
cross section of the fiber can in principle be scaled ar-
bitrarily, but adiabatically, as a function of ~ without
affecting this result.

It should be noted in passing that the optical-fiber
experiments proposed above are different from the
one proposed by Berry, 5 in which the cross-sectional
shape of an optical fiber is slowly deformed in shape-
parameter space. Here the circular cross-sectional
shape is kept constant, but the direction of light prop-
agation is slowly changed. Hence the parameter spaces
are different. Our proposed experiments are, in our
opinion, simpler to carry out than Berry's.

These results also apply to microwaves propagating
down a helically wound circular waveguide. Note that
the interior of the waveguide can now be the vacuum,
so that all medium-related effects vanish. However,
Maxwell's equations with appropriate boundary condi-
tions should yield these results classically. Hence
Berry's phase manifests itself from high energies to
low, from quantum to classical regimes: The mono-
pole at k = 0 has an influence which never disappears,
no matter how far or close one is to it.

Now we return to the question of the dynamical
phase factor. The evolution of the spin of the photon

is governed by a Hamiltonian that has a form similar to
that of the spin magnetic moment in a inagnetic field:

H(T) = Hp+Ks k(r), (10)

where Hplk(7), o.
&

= Eplk(7 ), o
& defines background

propagation. This is the most general Hamiltonian
which can be formed from the two vectors s and k(r)
in a straight waveguide, for a massless spin-1 particle
in an isotropic medium with an isotropic cross-
seetional boundary. For gradual windings, it is expect-
ed that additional terms arising from the winding will
be negligibly small. The coupling constant K is to be
determined by experiment. The equation of motion
for the spin state of the photon is

i(d/») Ik(~), ~& = H(r) lk(r), ~&.

Clearly the resulting dynamical phase factor
exp( —iEr) depends in general on the form of H.
However, the dynamical phase factors of the two arms
of the interferometer, which have equal optical path
lengths, are the same, and do not enter into the inten-
sity pattern given by Eq. (7). Hence this pattern is in-
dependent of the specific form of H, and depends only
on the geometrical phase factor. The separate roles of
the dynamical and geometrical phase factors can be
seen in the experiment with linearly polarized light in
a single helical fiber. After propagation through the
helix, the final state at the output of the fiber is, in
general,

I
x'& = 2 'i2

( exp l.
—i (Epr + K7 —y+ ) l I +

&
+ exp l.

—i (Ep~ —Kr + y, ) ] I
—

& ). (12)
Therefore I (x I

x'& I2 = cos2(~r —y+ ). By Malus's law,
this implies that the plane of polarization has been ro-
tated by an angle which is equal to « —y+. If the
fiber were straight, y+ would be zero. The rotation of
the plane of polarization would then be Kr, and must
therefore arise from the optical activity of the medi-
um, with K being related to its optical activity coeffi-
cient, which can be measured and subtracted experi-
mentally. Note that Berry's phase y+ is independent
of the size of ~. Hence in cases where K is negligible,
the dynamical phase factors can be ignored and the ro-
tation angle is just —y+. In summary, a fiber made
out of nonoptically active material, when wound gra-
dually into a helix, acquires an effective globai optical
activity.

Under what experimental conditions will the adia-
batic theorem'7 be applicable? Firstly, the validity of
Eq. (1) needs that the photon's propagation direction,
k(r), be well-defined everywhere along the wave-
guide, and that it changes adiabatically. This leads to

L,R„R,)) d, (13)

where d is the diameter of the cross section, L the total
length, R, the radius of curvature, and R, the radius of
torsion, of the path of the waveguide. Secondly, and
more importantly, there is a question about the adia-
batic conditions for Eq. (11). The nondiagonal matrix
elements which would lead to a violation of the adia-
batic theorem are given by

(k(.), —Ie/a. lk(. ), +& =(2 )-'&k(.), -leH/a. lk(. ), +& =(2«, )-'(k(.), —Is n(. ) Ik(.), +&, (14)

where n is the index of refraction and n(r) is the principal normal vector of the path. Since s is a vector operator,
by the Wigner-Eckart theorem,

(k(r), —Is.n(~) lk(r), + &
=0, (IS)

i.e. , b,a=2 is forbidden Thus th. ere is no .violation of the adiabatic theorem, no matter how small ~ is. This is a
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special situation due to the form of the Hamiltonian,
Eq. (10), and the special properties of the photon (i.e.,
its massless, spin-1 nature). This also solves a paradox
in the understanding of the applicability of the adiabat-
ic theorem here. Normally, this theorem requires that
the system evolves very slowly. But in our case the
photon travels at the speed of light, so that it takes lit-
tle time to go through the entire path of the
waveguide. However, there is another much faster
time scale, namely the time for light to cross the diam-
eter of the waveguide. This is the time it takes for the
local isotropy of the system, including its boundaries,
to be communicated throughout the system locally.
Also, this is the time scale on which the direction of
k(~), and hence s, is established. In short, Eq. (13) is
the only relevant condition. Since the diameter of the
core of an optical fiber is of the order of microns, this
condition is easily satisfied experimentally.

An astute reader may point out that our optical ef-
fects could be explained in principle entirely classically
in terms of Maxwell equations plus appropriate boun-
dary conditions. Intuitively, one expects classically
that the mutually orthogonal triad of vectors k, E, and
B will adiabatically propagate by parallel transport in-
side a gradually wound isotropic fiber, thus leading to
the above results. While this is correct, we point out,
as a matter of principle, that the classical theory fails
for low photon number when fluctuations set in,
whereas our quantum theory still holds. (This is simi-
lar to the situation in Young's two-slit experiment:
Classical and quantum interference patterns agree, but
fluctuations are absent classically. ) Also, the deriva-
tion of parallel transport starting from Maxwell's equa-
tions in the adiabatic limit for an isotropic medium,
with isotropic cross-sectional boundary conditions, is
not trivial. (In this connection, note that the ray-
optics limit, for which parallel transport in an isotropic
but inhomogeneous medium has been derived, does
not apply to a single-mode optical fiber, since the di-
ameter of the fiber can be comparable to the
wavelength of light. ) Furthermore, it would be non-
trivial to exhibit the topological nature of these effects
in such a classical treatment for more complicated
geometries, such as for a nonuniform helix, or for a
variable-diameter waveguide. Fundamentally, it is the
Bose nature of the photon which permits these optical
manifestations of Berry's phase to emerge on a macro-
scopic, classical level. Thus we would rather think of
these effects as topological features of classical
Maxwell theory which originate at the quantum level,
but survive the correspondence-principle limit (t 0)
into the classical level. (This situation has an analog in
quantum field theory: Namely, chiral gauge
anomalies, which are known to be topological in ori-
gin, if present at the fundamental, constituent level,

must survive with exactly the same amount at the
composite level, '8 or in a certain decoupling limit in
which some mass parameters tend to infinity. '9)

It would be interesting to see these optical effects
experimentally veriTied.
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Note added. —After this paper was written, the
second of the above predicted effects, namely, giobal
optical activity in a helically wound optical fiber, was
experimentally verified. 20
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