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It is shown that energy should be quantized if there exist cosmic spinning strings. Quantization
of energy arises naturally from the fact that the wave function must be single valued in the gravita-
tional field of a spinning string. This effect arises when the vortexlike vacuum configurations carry
constant nonzero angular momentum per unit length. Spinning strings occur naturally in spontane-
ously broken grand unified theories. A limit on Jcoming from the upper limit of the photon mass
is presented. The analogy with quantization of energy in the presence of gravitational magnetic

mass is established.
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The unusual properties of composite systems of
charged particles and magnetic monopoles or vortices
has attracted much interest since the celebrated paper
by Dirac.!-3 It was demonstrated in general that physi-
cal systems containing solitons and/or topological de-
fects carry unexpected quantum numbers.!”* Dirac
was the first who noticed that the quantization condi-
tion for electric charge emerges from the fact that
wave functions must be single valued.! In recent years
similar effects have been demonstrated in the frame-
work of unified gauge theories.

On the other hand, the Aharonov-Bohm effect*
shows that even if the gauge field is locally pure gauge,
i.e., a curvature of the underlying gauge connection is
(locally) vanishing, it can have a nontrivial effect on
the quantum mechanical system. The phase of a wave
function is nontrivially modified by such a gauge field.
In other words, the existence of noncontractible loops
can be detected quantum mechanically. The existence
of pointlike or line ‘‘defects’’ like magnetic monopoles
or vortices (strings) implies unusual angular momen-
quantization.

In general relativity, which in some sense is a gauge
theory of gravity, it is the mass energy of a particle
which plays the role of electric charge. It is natural,
therefore, to ask if one can have quantization of ener-
gy in the spirit of Dirac or the gravitational analog of
the Aharonov-Bohm effect.

Zee recently discussed a gravitational analog of
Dirac’s magnetic monopole which he calls ‘‘gravi-
tipole.””> His construction is based on the post-
Newtonian approximation to the Einstein equations. It
is well known that there exists an exact Taub-NUT
(Newman-Unti-Tamburino) solution of Einstein’s
equations which corresponds to Zee’s ‘‘gravitipole.’*®
The Taub-NUT or asymptotically Taub-NUT metrics
are characterized by the presence of gravitational mag-
netic mass N which is completely conserved (nonradi-
ating) and as discussed first by Ashtekar and Sen’ it

has a topological origin. In classical general relativity
those solutions are irrelevant because there is causality
violation caused by the presence of magnetic mass.
One can quantize fields in the background of an
asymptotically Taub-NUT gravitational field® and ob-
tain the quantization condition for energy.

The natural setting for discussion of the gravitation-
al Aharonov-Bohm effect is three-dimensional gravity,
where the vacuum Einstein equations R,, =0 imply
that curvature vanishes (locally), i.e., Ry,ag=0.
However, as it was demonstrated over twenty years
ago by Staruszkiewicz’ and recently rediscovered by
Deser, Jackiw, and ’t Hooft (and others),® this theory
is globally nontrivial. Classically, in this theory the
equations of motion of particle singularities (as well as
of extended objects first studied by Staruszkiewicz) are
implied exactly by the field equations as opposed to
the four-dimensional (4D) case. The absence of the
graviton in three dimensions makes it possible that the
model is exactly solvable.

It is obvious that one can obtain interesting solu-
tions to 4D gravity by reversing the dimensional
reduction procedure starting with solutions of 3D grav-
ity and lifting them to a trivial R x M3 R! bundle over
a 3D manifold Mj;. In other words, assuming that the
4D solution possess a Killing vector with a constant
norm and zero “‘twist,”” one has W R=®R, ie., the
Einstein-Hilbert Lagrangean density in 4D reduces to
the three-dimensional one. In this way one obtains lo-
cally flat 4D solutions with line singularities. The
three-dimensional ‘‘Kerr’” solution describing the
gravitational field of a massive and spinning particle’
corresponds in 4D to the solution describing a spin-
ning string with a constant mass and angular momen-
tum per unit length. The gravitational field produced
by an infinitely ‘‘thin’> nonspinning string has been
studied recently.!%-12, Static and cylindrically sym-
metric string solutions to the Abelian Higgs model
coupled to gravity!? as well as a spinning (stationary)
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solution to the non-Abelian Higgs model coupled to
gravity have been obtained recently.!* In the limit of
thin flux tubes one recovers the locally trivial gravita-
tional field of the string, i.e., the space-time is locally
flat and has a conical geometry. Paranjape!’ has shown
that in the presence of a magnetic flux tube, the
ground state of Dirac fermions carries a net angular
momentum. The exciting possibility of superconduct-
ing cosmic strings where the charge carriers are left-
and right-moving fermionic zero modes has been pro-
posed by Witten.!® These strings can have also a net
angular momentum carried by fermionic modes. So
the existence of spinning strings is possible.!*

It is the purpose of this Letter to discuss the quan-
tum mechanical properties of massive (or massless)
particles in the gravitational field of spinning strings. I
will show that the physical effect of nonzero angular
momentum per unit length of string is analogous to
the effect of magnetic charge. In the presence of a
spinning string the energy of a particle is quantized ac-
cording to the Dirac-type formula E =% c*/4GJ, where
G is the Newton constant and J is angular momentum
per unit length.

The spinning string solution and quantization of
energy.—The three-dimensional “‘Kerr solution”’? cor-
responds to a time-independent (stationary) spatially
localized spinning source with nonzero energy and an-
gular momentum density. The angular momentum in
D =2 (spatial) is a pseudoscalar,

J=FeylV= ey f dx (T~ T M

The metric found by Deser, Jackiw, and ’t Hooft® has
a simple form:

dstyy = — (dt — A dp)?* + dp? + p2a? d?, ()

where a=1—4Gm and m is a mass of a particle. The
value of J* is Jk= —(4G) '4e*=Je* The con-
stant A4 is determined to be —4GJ. The corresponding
spinning-string solution is therefore

dstyy = — (dt +4GJ dp)* + p?a? dp* + dp? + d?,
3)

where J and m are the string angular momentum and
mass per unit length. The metric (3) is locally flat and
can be transformed into Minkowski form,

dst= — dT*+ dX*+ dY? + dZ?, (€]
by a coordinate transformation
T=T+2GJa"'¢’, ¢'=ad,
(%)
X=pcos¢p’, Y=psing’, Z=z

This coordinate transformation is singular at p=0.
One can adopt two possible interpretations of the
string metric (3): (i) The metric is locally flat with
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periodic time coordinate with the period 87 GJ. (ii)
The time is not a periodic coordinate, but there is
a causality violation in the region p <p,. The
quantization-of-energy condition is true irrespective of
the interpretation adopted for the time variable. We
have a singular line source producing this kind of grav-
itational field.

Even if the metric (3) is locally flat there is a singu-
larity present. Namely, at constant ¢ as ¢ reaches 2
(which should be identified with ¢ =0), T jumps by
87 GJ. This ‘‘time-helical’’ structure of the spinning-
string space-time has interesting quantum-mechanical
consequences. Deser, Jackiw, and ’t Hooft suggested
that one has to identify times ¢ which differ by 87 GJto
preserve single valuedness and smoothness of the
manifold. When one quantizes fields in the gravita-
tional field of a string one will have fractional angular
momentum, j=a~ % n, na half integer. The angular
momentum spectrum is altered by a factor a~! be-
cause the space-time has locally flat conical geometry,
i.e., the range of the angular variable ¢’ is 27 a.

A way of measuring the mass per unit length m
would be through the gravitational Aharonov-Bohm
effect.* The locally vanishing curvature would be re-
flected in the phase of a quantum particle. In the
geometrical-optics approximation one can see the
phase shift by studying parallel transport of vectors
(i.e., four-momentum, polarization vector, etc.) along
closed paths. One may study the change of polariza-
tion vector of a high-energy photon moving along two
different paths containing a string inside. This effect is
small and is of order Gm, as is everything in the string
background, because the only available parameter is
a=1—4Gm. The effect of angular momentum J can
be probably seen in a sort of Sagnac effect.!” Now I
will show that the interpretation of T as an anglelike
variable with period 87 GJ is forced by quantum
mechanical principles.

Consider the Klein-Gordon equation for a particle
with mass w in the gravitational field of the spinning-
string solution:

(= VoVe+ut)e=0. (6)
We are looking for solutions of the form

¢ =e ETHokZy (5 &)
= o~ BN GIZ = IAGIEMy, (5 &), )]

where ¢ (p,¢) is a single-valued function of ¢. As ¢
increases from 0 to 27 and T ‘“‘jumps’’ by 8w GJ, the
wave function ¢ acquires the phase e~ $7IG/E/K  Wwe
conclude, following Dirac’s argument, that E = nk ¢/
4GJ, n an integer. Energy is quantized in units of
kc*/4GJ. It does mean that ¢ (or 7) is an anglelike
variable with period 87 GJ.

Before discussing another example of energy quanti-
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zation, let me present another derivation of the spinning-string solution. We are looking for stationary, cylindrical-
ly symmetric vacuum (exterior) solutions to Einstein’s equations of the form!’

ds’= —e?di+ e®(dt—wdd)?+ e (dr* + dz?),

(8

where v, ¢, and p are functions of r only. The derivation of solutions is straightforward and I refer to Ref. 7 for
the form of field equations for (8). In the case of rigid rotation, i.e., @ =const, which leads us to interesting solu-
tions (the nonrigid rotation case has pathological solutions and we will not discuss them here), the most general

exterior solution is the rotating Levi-Civita metric,

dS2= _ r2“(dt~A d¢)2+a2r2(1——a)dp2+rla(a—l)(dr2+ dzZ)_

When 4 =0 this is the Levi-Civita metric.'® But
nonspinning strings are invariant with respect to
Lorentz boosts along the z-axis. This restricts the
metric of the nonrotating string, and we have two
solutions with @ =0,2 (also for a spinning string).
The case a =2 is ruled out as ‘‘pathological’’ because
as r— oo the space-time becomes effectively three-
dimensional. Eventually we arrive at the solution
found previously by extending to four dimensions the
solution of 3D gravity. At this point it should be not-
ed that one can obtain stationary, cylindrically sym-
metric solutions of the Einstein-Yang-Mills-Higgs
model with the gauge group SO(3), which describe
spinning grand-unified-theory strings. The solutions
do exist and can be evaluated numerically for arbitrary
Higgs coupling constant A. In the Prasad-Sommerfield
limit A =0, the solution is known analytically.!*

Quantization of energy: analogy with electromag-
netism.—1I shall present a simple general-relativistic ex-
ample which makes the analogy between quantization
of energy and Dirac’s quantization of electric charge
more transparent. Consider the stationary metric,
which can be seen as the asymptotic form of some
solutions of Einstein’s equations:

ds?= — V(dt— A; dx" )} + hy dx' dx’, (10)
where V,4;, and hy; are functions of x’ only. The al-
lowed ‘‘gauge’’ transformations are t— ¢’ =+ A (x/)
and the diffeomorphisms of ¢=const hypersurfaces.
The ‘‘gauge’” transformation implies that 4,
transforms like the electromagnetic gauge connection,
A;— A/=A;+V,A. The three-metric Ay is asymptot-
ically (locally) Euclidean. The notion of quantum par-
ticle in a gravitational field is well defined only asymp-
totically, i.e., in the asymptotically flat region. We
have then the asymptotic positive-frequency modes
defined with respect to time ¢ and one can construct
the Fock space of asymptotic states. The metric (10)
is asymptotically flat by construction.

I consider two examples by taking for 4; the Dirac
magnetic-monopole gauge field and the gauge field
produced by a thin, infinitely long solenoid (vortex)
(the Aharonov-Bohm gauge field). The first example
corresponds to the asymptotic Taub-NUT space-times’
which are characterized by nonvanishing magnetic

9

mass. The second one corresponds to the spinning-
string metric. Let 4; be the Dirac magnetic-monopole
field Ag4=—2N(1—cosf)=—4Nsin’9/2. In this
case the metric is spherically symmetric (if Ay is flat or
spherically symmetric) and has a coordinate singularity
at §=m (‘“string” singularity of the gauge field).
Now, if we consider the Klein-Gordon equation, the
wave function (section) has a form ¢=e &/
xy(r,0,¢6). As usual we have to introduce two coor-
dinate patches on the space-time manifold because 4;
cannot be defined globally on S? if there is a magnetic
monopole. One should also consider a wave section!’
for a scalar field. In the gauge where 4, is regular at
6 =m we have

Ag=+2N(1+cosh) = Ad+4N
—Ap+8dA, A=4N¢. 3))

This corresponds to a coordinate transformation
'=t+4N¢ and the wave function (section) ¢
changes to ¢'=e~ ™y’ (1,0,p), where ¢’ is a single-
valued function of ¢. If we demand that ¢’ is single
valued then the Dirac-type quantization condition em-
erges naturally: 4 NE =% n, nan integer. The quantum
mechanical consistency conditions once again force us
to interpret the time ¢ as an angular variable with
period 87 N. The space-time acquires the topology
S$3x R with the vector field 8/ generating the S!
(Hopf) fibers of S3. The coordinates on S® are
Y=1t/2N, 0, and ¢. These are closed timelike curves,
and we have unfortunately causality violation implied
by the presence of magnetic mass. In the case of a k-
monopole connection A, the null infinity has topology
of the lens space L (k,!) which is S® with Z, identifica-
tions made along S' (Hopf) fibers.” It is the asymptot-
ic structure of a metric which is relevant in the deriva-
tion of the quantization condition of energy but not its
local behavior at ‘‘short distances.”” One can say,
therefore, that our result is purely ‘‘kinematic,”’ be-
cause it does not depend on the field equations to
which these metrics are solutions. At this point one
should note that the post-Newtonian construction of
“‘gravitipoles’® by Zee® corresponds to our simple ex-
ample. However, our argument for quantization of
energy is completely general-relativistic in contrast to
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the nonrelativistic mechanical argument by Zee.
Therefore not only is the energy of massive particles
quantized, but also this is true for massless particles
like the photon. The Planck relation E=Fw relating
frequency to energy is also valid for quantum systems
in the field of a ‘‘gravitipole,”” which seemed to be an
unclear point in Ref. S.

The second example corresponds to the spinning-
string solution I have discussed earlier. The potential
A, for this case is that of the Aharonov-Bohm effect,
Ag= A =const, and can be locally gauged away by the
singular gauge transformation A= —A¢. It does
mean that the time is transformed to t'=t— A¢, and
the wave function ¢ = e~ /%y (p,z, ¢ ) gauges to

¢ =" EMY (p,z,¢) = eHEMR = EMY (2, ).

Once again single valuedness of ¢’ implies the quanti-
zation condition E4 =k n. The proper approach to for-
mulation of quantum mechanics in the cases discussed
here is the formulation in terms of wave sections and
complex vector bundles.!?

The metric of the spinning string has causality-
violating regions as can be seen from the fact that the
norm of the rotational Killing vector 8/0¢ (which has
closed orbits) changes sign at p=py=4GJa~!c73.
For p < pg there are closed timelike curves which are
orbits of 9/0¢. One can estimate the size of the
causality-violating region knowing how large J can be.
From quantization of energy EF one can estimate J
knowing what is the lowest quantum of energy E,;,.
The natural constraint on E;, emerges from the limit
on photon mass, Eq,~ 10> eV. This gives
J=FKc*/4GE ~ 3x10% erg sec/cm. Also, a periodicity
of time of 6x10~3 sec is not encouraging. For this
resaon one should not expect spinning strings to be
realistic or stable. One could imagine that once they
were formed they might decay because of instabilities.
Concluding, I have shown that quantization of energy
emerges naturally when there exist spinning cosmic
strings. My argument shows that energy is quantized
for purely topological reasons.

If the string is not infinitely thin and we have the re-
gion of nonrigid rotation w = w(r) for r < ry matching
a region of rigid rotation w = wq, r > ry, where ry is the
string thickness, then the asymptotic form of the
metric (8) is given by Eq. (3). The previous argu-
ments about quantization of energy are unchanged.
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The situation here is quite similar to the case of the
Dirac quantization condition which is the same for the
Dirac or 't Hooft-Polyakov monopole solution.
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