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It is shown that in simple three-dimensional flows there are uncountably many different
codimension-2 scenarios for the onset of chaos. We analyze these scenarios via one-dimensional
Poincaré maps, and show how to construct renormalization groups to obtain new universal results.

Comparisons with numerical studies are given.
PACS numbers: 05.45.+b

The aim of this Letter is to stress that the variety of
routes to chaos in even very simple flows is much wid-
er than that seen in continuous maps of the interval.!
The latter maps allowed us to study the three scenarios
of period doubling, intermittency, and quasiperiodici-
ty. In simple flows of the type of the Lorenz model?
we find an infinity of routes to chaos reminiscent of
the richness of complex analytic maps,® except that in
our case we deal with the onset of chaos in generic
cases. How these scenarios come about is explained
here, and the example of period tripling is studied in
some detail.

The basic reason for the greater richness of these
flows is that their Poincaré sections can be reduced to
maps of an interval* f: [—u,v]— [—u,v],

fi(x)=v—al|x|*+hot, x=0,

flx) = frR(x)=—u+bF+hot, x>0, ()

w,v>0, >1,

where ‘‘h.o.t.”’ stands for ‘‘higher-order terms,’’ and
where f; and fi are increasing; see Fig. 1. With the
condition f(—u)=f(v) one gets continuous circle
maps, and with f(—x)=— f(x) one gets maps
equivalent® to one-hump maps g(x) where g(x)
=f1(x) for x<0, g(x) = — fr(x) for x > 0. In gen-
eral, however, these maps belong to a much larger
space of functions and they exhibit richer dynamical
behavior.%’

To see how such maps come about consider a flow

"

in three dimensions which has the geometrical struc-
ture of the Lorenz flow* (see Fig. 2). Near the origin
the flow reads (x,5,z) =m;x, —m3y, —myz). We as-
sume that this holds within a box

B={(xyz)-1<x<1,-fsys+i,0<:<l]

around the origin (see Fig. 2). The maps of interest
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FIG. 1. A graph of the map Eq. (1), for{=1.5,u=v=1,
a=0.3978. .., b=1.8050.... The inner box shows the
restricted threefold-iterated map. Rescaling yields the renor-
malized map. Equation (6) can be read off by following the
dashed lines.
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FIG. 2. The box within which the flow is linearized. The
inset shows the global structure of the flow.

are return maps on U (the face z=1 of B). Suppose,
therefore, that we start at time ¢=0 at a point
(xg,¥0,1) on U. If x> 0, its orbit hits the face F* of
B at time "= — (1/n))Inxg li.e., x(*) = xe™" =11.
Accordingly,

(xg,¥0, 1) — (l,yoxa"/"‘,x(;"/"’ ) 2)

in time r*. We thus see that the flow within B maps
any line x=const on U into a line z=const on F*.
The basic assumptions about the global properties of
the flow outside the box B are that lines z=const on
F* are mapped back to lines x=const on U
(preserved strong stable foliation*), and that the
resulting return map from U to itself is contracting in
the y direction (see Fig. 2). (Needless to say, in gen-
eral one does not need the original coordinates to be
preserved by the flow; any contracting preserved folia-
tion will do.)

Denote now the points where the unstable manifold
of the origin hits U for the first time as ( —w,uy, 13)
and (v,v,,v3) (see Fig. 2). The assumption on the
preserved linear foliation and Eq. (2) (together with its
analog for xo < 0) lead to return maps

ny/n
Xo —u+bxg? ' +ho.t.(xg)
Yol — |m2 + bzyox(;"/n‘ +h.0.l.(X0,y0) 3)

1 1

-

when x¢ > 0, and to
ny/n
Xo v—axozl ' — h.o.t.(xg)
ny/n,
Yol — V2+(12y0X0 +h.0.t.(X0,y0) (4)

1 1

when xy < 0. We thus see that the decoupling of x
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from y and zallows us to represent the dynamics safely
by maps of Eq. (1), with {=m,/n,. We should stress
that the original Lorenz model in its chaotic regime ap-
pears to have { < 1, which leads to cusped return maps
favoring first-order transitions to chaos. Therefore,
we will focus here on the cases where { > 1, a condi-
tion easily realized with similar flows as we demon-
strate below.

To see the richness of dynamical behavior we pick
the two-parameter family

() v—x2, x=0,
BuiX) = —pn+xt x>0, )

from [ —u,v] to itself. We should stress that { =2 is
not special here, and (5) is chosen only for concrete-
ness of the forthcoming discussion. The condition
w=v which yields antisymmetric maps equivalent to
unimodal ones is referred to as the ‘‘first diagonal.”
The condition v —v?=pu?—pu which yields continuous
circle maps is referred to as the ‘‘second diagonal.”
We can show® that these maps have a unique winding
number for values of &, v in the (i, v) plane which lie
below and on the second diagonal. Consequently, this
region of w,v is naturally partitioned according to the
winding number, with irrational winding numbers ly-
ing on lines [cf. the partition of the (K,w) plane of
the more familiar sine-circle map x'=x+ow— (K/
2m)sin(2rx) (mod 1) for values of K < 1]. Above
the second diagonal one can lose the uniqueness of the
winding number, but one can always define a rotation
interval R (g, ,).5-

In analogy to continuous circle maps we define
Arnol’d tongues A, and frequency-locked regions’
L,, such that u,v € A, if and only if R(f,,) € wand
such that u,v € £, if and only if R(f, ,)={w}. The
part of .L , below the second diagonal we call Jt ,,. (If
w is irrational we have M, =L ,.) A sketch of these
regions is shown in Fig. 3(a). In the rational case we
distinguish in addition another subregion 7% ,/, of
L p/q where (f, ,)? restricted to a properly chosen
subinterval has again the form (1).

As a consequence the global features of the phase
diagram sketched in Fig. 3(b) repeat themselves in
each 7 ,/,, yielding inductively a hierarchical struc-
ture. At each level of this hierarchy, going from .L
to the rest of 4, when wis irrational or leaving .£ ,/,
from the region which is neither in M ,/, nor in R ,/,
is tantamount to a transition to chaos. Analogous
transitions can also be found in continuous circle
maps. !0

There are, however, new codimension-2 scenarios
generated by following paths from £,,, to %, at
each level of the hierarchy. Such a step is referred to
as M(p/q— w) to indicate in which locking one
enters at the next level of the hierarchy. The generic
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FIG. 3. (a) Blowup of Arnol’d tongues A ,, near the second diagonal for a rational and an irrational w. The crosshatched
areas indicate the regions mentioned in the text. The bold lines and the irrational points on the second diagonal belong to the
boundary of chaos. In this Letter we are concerned with transitions from &, to M ,. (b) Sketch of the global structure of the
u-v phase diagram. Below the second diagonal the plane is partitioned according to the winding number. Above the second di-
agonal mode-locked regions .L p/, still exist. In each % ,/,, ¢-fold iterates of the map, restricted to a proper subinterval, exhibit

a similar phase diagram on a reduced scale, etc. ad infinitum.

path of this kind will therefore be characterized by

M(pi/q1— p/a2)M(py/ a2 p3/a3) M(p3/q3— pa/qa) . - .

corresponding to successive ¢;,43,q4, . . . -furcations.
The simplest ones correspond to cases where p,/q,
does not depend on n. These are the ones which will
yield a fixed point under renormalization.

To show what kind of universal results appear in
these new scenarios we focus (somewhat arbitrarily)
on the process of period tripling with p,/q,=%. We
consider then maps as in Eq. (1) and Fig. 1, and look
for a functional renormalization-group theory for this
period tripling. One can show (cf. Fig. 1) that the
relevant functional equations for this problem of tri-
pling in this space of functions are

Sr(x) =afrefiofr(x/a),
S () =afrefrofi(x/a).

Since { =m,/m,, in the original flow, values of { close
to 1, i.e., {=1+e¢, represent real and interesting prob-
lems. Consequently, solving Egs. (6) by methods of €
expansion'? yields physically relevant predictions. We
notice that the pieces of the relevant third iterates of
the map (before rescaling) appear in the box formed
by the interval

[—u+alw—>but), —p+a(—p+avt)t].

(6)

Accordingly, the rescaling factor « is given by

a=—p/l—p+alv—but)t], @)
and (6) is approximated by
__—_p.'_:-i’_x_i= —pt+alv—>bl—p+alx/a)]*}E,
(8a)
b bl -t aly— b (@)

(8b)

For {=1 we find the fixed point a*=b*"=1, u*=1,
v=2, a=00." The eigenvalues of the linearized re-
cursion relations are Ay =0, A,=1, A ;=3, A\y=o. For
{=1+€ we seek solutions of the form a=b=1+1y,
v=2+p and look for the corrections to the relevant
eigenvalues A3, A4. Equation (7) leads to

=-1/B. (9

Expanding Eqgs. (8) to first order we find the fixed-
point solutions

_B'=v", e=—2y"/Iny". (10)
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Linearizing the recursion relations we obtain the two
relevant eigenvalues

)\3=3-—2/ln~y'*, A4=3/‘)'*. (11)

These predictions can be compared to direct numerical
simulations. In the simulations we chose Eqgs. (1) with
w=v=1 leaving a and b as parameters for every given
{. We found numerically’ values of the parameters
leading to superstable orbits of order 3, 9, 27, 81, and
243 for various values of {. The values of parameters
u,v appear to converge geometrically with a rate &
(e.g.,5=4.14,4.51,6.62, 8.7 for {=1.05, 1.1, 1.5, 2).
The value of & should be compared with A3 of Eq.
(11). For €=0.05 the agreement is better than 10%
which is satisfactory in view of the large correction ob-
tained to this order. The agreement between the cal-
culated « values’ and Eq. (9) is even closer, as usual.
Notice that it can be proven that all new scenarios we
discuss in this Letter indeed lead to chaos. Further-
more the renormalization group also describes the on-
set of chaos, yielding for the increase of the topologi-
cal entropy the same critical exponents as for the ¢-
furcations.

Finally we give an example of a flow that seems to
realize the conditions and results of the present
theory:* 14

x=18(x—y)+ex?, y=-72y+xz+ux’,

3= =272+ xy—0.072, (12)

The eigenvalues at the origin are n;=1.8, 1,=2.7,
m3=7.2. Thus {=1.5. We determined’ the parameter
values where the flow has period 3" with winding
number %+ for n=1,2,3,4. We found 3, =6.66
which is in excellent agreement with 3.,,,=6.62 for
{=1.5.

For simplicity we chose { to be constant. The origin
is therefore always unstable. Generically, the spec-
trum of eigenvalues will depend on the parameters as
for example in the case of the Lorenz model. The
routes to chaos described above would then follow a
transition from a globally attracting fixed point to a
pair of stable fixed points and a subsequent pair of su-
percritical Hopf bifurcations. Since the global picture
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described above is robust to small perturbations and
since our flow example is certainly not exotic, it ap-
pears worthwhile to seek experimental realizations of
the scenarios found above.
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