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New Universal Scenarios for the Onset of Chaos in Lorenz-Type Flows
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It is shown that in simple three-dimensional flows there are uncountably many different
codimension-2 scenarios for the onset of chaos. %e analyze these scenarios via one-dimensional
Poincare maps, and show how to construct renormalization groups to obtain new universal results.
Comparisons with numerical studies are given.

PACS numbers: OS.45.+b

The aim of this Letter is to stress that the variety of
routes to chaos in even very simple flows is much wid-
er than that seen in continuous maps of the interval. '

The latter maps allowed us to study the three scenarios
of period doubling, intermittency, and quasiperiodici-
ty. In simple flows of the type of the Lorenz modelz
we find an infinity of routes to chaos reminiscent of
the richness of complex analytic maps, 3 except that in
our case we deal with the onset of chaos in generic
cases. How these scenarios come about is explained
here, and the example of period tripling is studied in
some detail.

The basic reason for the greater richness of these
flows is that their Poincare sections can be reduced to
maps of an interval4 f: [ —p„v1 [ —iM„v],

fL(x) =v —rzIxI~+h. o.t. , x~0,
f(x) ='

,fit (x) = —p, + bx + h.o.t., x & 0,

p„,v)0, $) 1,

where "h.o.t." stands for "higher-order terms, " and
where fL and ftt are increasing; see Fig. 1. With the
condition f( —p, ) = f(v) one gets continuous circle
maps, and with f( —x) = f(x) one gets map—s
equivalents to one-hump maps g (x) where g (x)
= fL (x) for x ~ 0, g (x) = ftt (x) for x )0. In ge—n-
eral, however, these maps belong to a much larger
space of functions and they exhibit richer dynamical
behavior. 6 ~

To see how such maps come about consider a flow
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0.0
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FIG. l. A graph of the map Eq. (1), for (=1.5, iu, =v =1,
a =0.3978. . . b=1.8050. . . . The inner box sho~s the
restricted threefold-iterated map. Rescaling yields the renor-
malized map. Equation (6) can be read off by following the
dashed lines.

in three dimensions which has the geometrical struc-
ture of the Lorenz flow (see Fig. 2). Near the origin
the flow reads (xy, z) =ritx, —q3y, —gzz). We as-
sume that this holds within a box

8 =
I (x,y, z, ) I

—1 ~ x ~ 1, —-' ~ y ~ -'. o ~ z ~ 1 I

around the origin (see Fig. 2). The maps of interest
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(a) IIIowup ««nol'd tongues A near the second diagonal for a rational and an irrational w The crosshatched
areas indicate the regions mentioned in the text. The bold lines and the irrational points on the second diagonal belong to the
boundary of chaos. In this Letter we are concerned with transitions from R to ~ . (b) Sketch of the global structure of the

phase diagram. Below the second diagonal the plane is partitioned according to the winding number. Above the second di-

agonal mode-locked regions X pl@ still exist. In each%' p/~ q-fold iterates of the map, restricted to a proper subinterval, exhibit
a similar phase diagram on a reduced scale, etc. ad infinitum

path of this kind will therefore be characterized by

M(pi/qi - p2/q2) ~(p2/q2- p3/q3) ~(p3/q3 p4/q4) ~

corresponding to successive q2, q3, q4, . . . -furcations.
The simplest ones correspond to cases ~here p„jq„
does not depend on ir. These are the ones which will

yield a fixed point under renormalization.
To show what kind of universal results appear in

these new scenarios we focus (somewhat arbitrarily)
on the process of period tripling with p„jq„—= —,'. We
consider then maps as in Eq. (1) and Fig. 1, and look
for a functional renormalization-group theory for this
period tripling. One can show (cf. Fig. 1) that the
relevant functional equations for this problem of tri-
pling in this space of functions are

fR «) =nf~ fi. 'fbi(x/n).

fL(x) =nf„'f~ 'fL (x/n).
(6)

»nce (=q2/qi, in the original flow, values of ( close
« I, i.e., g = 1+~, represent real and interesting prob-
lems. Consequently, solving Eqs. (6) by methods of 5
expansion' yields physically relevant predictions. %e
notice that the pieces of the relevant third iterates of
the map (before rescaling) appear in the box formed
by the interval

[ —p, + a (v —bp, ')', —p, + a ( —p, + av')' l.

n = —p/[ —p, + a(v —bpt)~],

and (6) is approximated by

—p, '+ a'9 = —p, + a [v —b [ —p, + a(x/n)~]~ }~,

(8a)
—p,

' —b'9 = —p+ a [ —p + a [v —b(x/n)']' }'.
(8b)

—p' = y', e = —2y "/1ny'. (10)

For ( = 1 we find the fixed point a"= b' = 1, p,
' = 1,

v =2, n= ~.'3 The eigenvalues of the linearized re-
cursion relations are A. i =0, X2 = 1, A.3=3, A.4= ~. For
g = 1+e we seek solutions of the form a = b = 1+y,
v = 2+p and look for the corrections to the relevant
eigenvalues P 3, X4. Equation (7) leads to

n = —1/P. (9)
Expanding Eqs. (8) to first order we find the fixed-
point solutions
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x-1.8(x —y) + ex', y = —7.2y+ xz+ p, x3,

z - —2.7z+ xy —0.07z . (12)

The eigenvalues at the origin are pi=1.8, r)2=2, 7,
v)3 7.2. Thus $ - 1.5. We determined7 the parameter
values where the flow has period 3" with winding
number —', for n -1,2, 3, 4. We found Sti,„=6.66
which is in excellent agreement with 5,~=6.62 for
$ - 1.5.

For simplicity we chose ( to be constant. The origin
is therefore always unstable. Generically, the spec-
trum of eigenvalues will depend on the parameters as
for example in the case of the Lorenz model. The
routes to chaos described above would then follow a
transition from a globally attracting fixed point to a

pair of stable fixed points and a subsequent pair of su-
percritical Hopf bifurcations. Since the global picture

Linearizing the recursion relations we obtain the two

relevant eigenvalues

)i, -3—2/In7', )i4 ——3/y'.

These predictions can be compared to direct numerical
simulations. In the simulations we chose Eqs. (1) with

p, = i =1 leaving a and has parameters for every given
We found numerically values of the parameters

leading to superstable orbits of order 3, 9, 27, 81, and
243 for various values of $. The values of parameters
p„, i appear to converge geometrically with a rate 5
(e.g. , 8 =4.14, 4.51, 6.62, 8.7 for $ = 1.05, 1.1, 1.5, 2).
The value of 8 should be compared with A. 3 of E'q.

(11). For e=0.05 the agreement is better than 10%
which is satisfactory in view of the large correction ob-
tained to this order. The agreement between the cal-
culated a values7 and Eq. (9) is even closer, as usual.
Notice that it can be proven that all new scenarios we
discuss in this Letter indeed lead to chaos. Further-
more the renormalization group also describes the on-
set of chaos, yielding for the increase of the topologi-
cal entropy the same critical exponents as for the q-

furcations.
Finally we give an example of a flow that seems to

realize the conditions and results of the present
theory s'4

described above is robust to small perturbations and
since our flow example is certainly not exotic, it ap-
pears worthwhile to seek experimental realizations of
the scenarios found above.
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