
VoLUME 57, NUMBER 7 PHYSICAL REVIEW LETTERS 18 AUcUsT 1986

Density of Localized States near the Band Edge of Disordered Systems
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The band-tail density of states for the tight-binding model with Gaussian distribution of site en-
ergies is calculated numerically in one, t~o, and three dimensions by use of the recursive transfor-
mation method. Our results confirm the band-tail scaling properties as predicted by the Halperin-
Lax theory but indicate that in 3D, the near-tail behavior displayed by the model is qualitatively dis-
tinct from the simple exponential as deduced from experimental data. Implications are discussed.

PACS numbers: 71.20.+c, 71.50, +t

Study of band tails in disordered systems has been a
topic of continuing experimental and theoretical in-
terest over the past three decades. From optical and
electrical measurements on a wide variety of disor-
dered semiconductors, '2 it has been deduced that the
density of states p(E) in the tail region can be
described by the functional form inp(E) —(E—E,),
where Ei is a constant in the viciruty of the band edge,
and n =1. Theoretical modeling of the band-tail
behavior, on the other hand, is far less conclusive as a
result of the lack of exact results even for simple
models. In their classical work, Halperin and Lax3

(HL) have presented a variational approach to the cal-
culation of band-tail densities of states. In one dimen-
sion, the predictions of the HL theory have been cor-
roborated by more exact treatment~ 5 of the problem.
However, in three dimensions a discrepancy emerges
between the HL density-of-states behavior, lnp(E)—(E Ei)' 2, an—d that deduced from experimental
data. A number of suggestions have been made re-
cently in regard to the source of this discrepancy. 6 8

While the ideas vary, the implicit basic position
remains that the exponential tail of p(E) (a= 1)
should be explainable solely on the basis of random
potential fluctuations. Therefore the general overrid-
ing concern is to obtain the true density-of-states
behavior for the 3D random potential model. In this
work we use the recursion method devoped by Hay-
dock, Heine, and Kelly to calculate directly the tail
density of states in d=1, 2, and 3 for a tight-binding
Hamiltonian with Gaussian distribution of site ener-
gies. Our results confirm the band-tail scaling proper-
ties predicted by the HL theory as well as delineate the
regime of applicability for the coherent potential ap-
proximation to the tail region. However, in 3D the
calculated lnp is shown to display characteristics which
are qualitatively distinct from the experimentally de-
duced n = 1 behavior. This disagreement suggests that
either there is some aspect of the tail density-of-states
behavior which is not yet experimentally observed, or
else some elements in addition to random potential
fluctuations must be taken into consideration for a
proper account of the tail behavior.

&(E) = ——lim im(G,i» (E+ i&))„,
1

VP + 0+
(2)

where y is a configuration index, ()„means confi-
gurational averaging, and Gobi'~ is the Green's function
determined at the origin (the source point) for confi-
guration y. To calculate Got" ~ (E+ iq), we use the re-
cursion method developed by Haydock, Heine, and
Kelly9 to transform the equation of motion into a tridi-
agonal form in the new basis representation. The new
equation of motion is truncated at the N th basis func-
tion by the introduction of a self-energy X'"'(E), and
the true Green's function Got"i (E+iq) is approxi-
mated by Goi" i (E +i q, Xi"i (E ),N ). The self-energy
X'i'(E) is determined through the self-consistent
condition

Got"' (E+ iv), X "i(E),N)

= Go~"~ (E+is), X~"~(E),N —1).
From Got" i (E+iq, X'i'i(E), N) we can obtain the lo-
cal density of states as a function of E. An averaging
over configurations then yields p(E). In actual im-
plementation both the number of basis functions N
and the number of configurations considered in the
averaging process were systematically increased till the
value of the tail density of states stabilized. In all cal-
culations a small q, on the order of 10 5 to 10 4, was
added to E so that states which appear as isolated poles
in Gobi'i (E, X,N) may be picked up. Also, since the

Consider the tight-binding Hamiltonian

H= X~i~i) &i~+ v ~i) &j~.
fI,g

where the constant hopping matrix element V will be
set equal to 1, [ij ) denotes the nearest-neighbor pair,
and ~; is the random site energy which is Gaussian dis-
tributed with mean zero and variance w2. The use of
Gaussian distribution for e, is based on the reasonable
assumption, supported by recent experimental evi-
dence, '0 that fluctuations in ~; arise from independent
additive noise sources. The electronic density of states
of the system is formally given by
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p(E) for the tight-binding model should be symmetri-
cal about E=O, the density-of-states statistics can be
improved by an averaging of G(~)(E, X,N) with
Go(") ( —E, X,N) and use of the resulting Green's
function in Eq. (2).

In one dimension, our direct calculation of p(E)
can be compared with the perturbation solution5 of the
exact density-of-states equation, i.e.,

(4a)pcpA(E) = 7T ImG&(E XcpA),

pCO P(e, )e,
XcpA(E) = «i

XcpA)Ge(E XciA)
'

I-(E) = (2/~)'~'N, /N', (3a)

N+ = Ch r +-'~2 exp( ——,
' r'+ 2Er), (3b)

where p =p w2~3u'~3a is the scaled dimensionless densi-
ty of states, a is the lattice constant (set equal to 1),
and E= (E—2)/(w4~3u '~3) is the scaled dimension-
less energy with the crystalline band edge (E = 2) as
the reference origin. Figure 1 shows a plot of p(E),
Eq. (3), and the results of numerical calculation car-
ried out for w =0.6, N =40 (81 sites), averaged over
4.3 x 106 configurations. The agreement is excellent
for E & 1.5, but the perturbation solution seems to
underestimate slightly the density of states deeper in
the tail region. It should be noted that Eq. (3) yields
exactly the HL density of states, pHL(E) =(4E/n)
x exp( —8E3~2/3), in the asymptotic limit of large E.

In two dimensions, there is no exact theory for the
p(E) tail behavior. Our results will be compared with
the coherent potential approximation" (CPA) and the
HL theory. For the CPA,

X= w'G, (E X)+—w'G,'(E X)—. (5b)

In Fig. 2 the scaled density of states j, calculated on
the simple square lattice, is plotted as a function of
scaled energy E for five different values of w=0. 2,
0.4, 0.6, 0.8, and 1.0. For two of the values, w=0.2
and 0.6, we have also plotted the density of states cal-
culated on finite clusters (embedded in vacuum). The
purpose of the finite-cluster calculations is to check
effect of different boundary conditions on our results.
It is found that as long as both the cluster size
(N & 30) and the number of clusters averaged are
sufficiently large, the results obtained are insensitive
to the boundary conditions. The fact that in the
averaging process only the Green's function at the ori-
gin (center of the cluster) is involved also diminishes

0.0-+x~~

is the Gaussian distribution of e, For the HL
theory, '2 we have

p„(E) = 0.120E exp( —0.9311E),

where p = p47r Va', E= (E E—cpA)4~ &/w, and Ecp„
is the band edge determined from the truncated CPA
equation

(4b)

where G, denotes the crystalline Green's function for
the square lattice in our present application, and P(e, )
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FIG. 1. Plot of scaled 10 tail density of states as a func-
tion of scaled energy. Open circles denote numerical results
calculated with w=0.6, N=40 (81 sites), and averaged over
4.3x106 configurations. Solid line is calculated from Eq.
(3). The maximum error bar on our numerical results is
smaller than the size of the open circle.

40 I I I l I I I I I

-4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0
E

FIG. 2. Scaled 2D tail density of states plotted as a func-
tion of scaled energy. Solid lozenges, w=0.2, %=35 (2521
sites), 10' configurations; open circles, w=0.4, N=31
(1985 sites), 1.2 x 104 configurations; open lozenges,
w = 0.6, N = 31 (1985 sites), 4X 103 configurations; inverted
triangles, w=0. 8, %=31 (1985 sites), 2X10~ configura-
tions; solid triangles, w=1.0, N=31 (1985 sites), 2X104
configurations; solid circles, finite cluster ~ = 0.2, W = 39
(3121 sites), 6.6X10 configurations; open triangles, finite
cluster w=0. 6, N=39 (3121 sites), 2X104 configurations.
The solid line is the HL theory prediction calculated from
Eq. (5). The dashed lines are the CPA results evaluated
from Eq. (4) with different values of w. The error bar on
our numerical results varies from less than the size of the
symbol for E & 0 to about twice the size of the symbol at
F. = 8.
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the influence of the boundary.
We note in Fig. 2 that the scaling of the different w

curves implied by Eq. (5) [p is only a function of
(E E—cp„)/tv2] is weil followed by the numerical data
in the range of E & 5. While the prediction of Eq. (5)
falls below the data in terms of magnitude, the slope
of the solid line reasonably parallels that of the calcu-
lated data points. Only at large w values is there a sys-
temtic deviation of the data from the HL slope. In this
context it should be mentioned that the numerical
density of states results of Thouless and Elzain, '2 ob-
tained from finite clusters of up to 7100 sites (with an
equivalent w value of 0.58), are in the range of E ( 3
and have magnitudes which fall consistently below our
calculated values. The difference is attributable to the
fact that a square distribution of e, was used in their
numerical work. An independent calculation by us has
verified this effect due to the shape of the e, distribu-
tion.

Comparison between our 2D results and the CPA
curves as evaluated from Eq. (4) is seen to show re-
markable agreement for E & 0, i.e., within the CPA
band. In the tail region the CPA results display no
scaling behavior, and the agreement with our numeri-
cal results is poor for w (0.8. However, as w in-
creases beyond 0.8 the agreement improves. A plausi-
ble explanation for this fact is that as w increases,
more and more states tend to be localized on a single
(or a few) site(s), and CPA's single-site effective
medium description thereby becomes more accurate.
Since the HL theory inherently treats the other limit
where each localized state extends over many sites, it
is interesting to note from Fig. 2 that in 2D, w =0.6
seems to be the dividing value above which the tightly
localized states dominate the density-of-states behav-
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ior in the near-tail region, and below which the larger-
sized localized states are more numerous.

In Fig. 3 we present four sets of 3D tail density of
states calculated on a simple cubic lattice with w =0.9,
1.2, 1.5, and 1.8. For comparison, predictions of the
HL theory and the CPA are also plotted. The HL den-
sity of states has the form'3'4

FIG. 3. Scaled 30 tail density of states plotted as a func-
tion of scaled energy. Open circles, w 0.9, 2.Sx10 con-
figurations; inverted triangles, w = 1.2, 4& 10 configura-
tions; solid circles, ~ =1.5, 10~ configurations; solid trian-
gles, e -1.8, 1.4& 10 configurations. In all the numerical
calculations we used N = 29 (34279 sites). The solid line is
the HL theory prediction calculated from Eq. (6). The
dashed lines denote the CPA results evaluated from Eq. (4)
with the values of w given in the figure, The error bar on
our numerical results varies from less than the size of the
symbol for E & 0 to about twice the size of the symbol at
E =70.

Ht (E) = pep„(8.96/n + E)3.092(8.96/n + E)exp[ —1 540( 8 .9/6m +E. ) tl2] (6)

where p= p8mu a /w2, E=64n2u (E—Ecp„)/w",
and the factor 8.96/m gives the separation of the mo-
bility edge from the CPA band edge. The CPA density
of states is given by the same Eq. (4) except now G,
stands for the crystalline Green's function in the sim-
ple cubic lattice. Again, we see that the scaling of the
different w curves predicted by Eq. (6) [p is a function
only of (E EcpA)/w ] is b—orne out by the data,
although in magnitude pHL tends to underestimate the
numerical results. The behavior of the CPA band tails
is similar to that seen in 2D: Agreement with the data
improves as w increases beyond 1. The crisscrossing
of the various CPA curves is also understandable since
the slope of the CPA tail scales as N2, whereas the
near-tail behavior scales as w4.

An important point to be noted about Fig. 3 is that
the numerically calculated 1np(E) distinctly displays

an inflection point in the vicinity of E=0. That is, Inp
changes from a downward curvature for E & 0 to an
upward curvature at some point E&0. In fact, a
least-squares flt of our results with the form
lnp = a (E —Ecp„) + b yields exponent values of
a = 0.5, 0.6, 0.8, and 0.5 for w =0.9, 1.2, 1.5, and 1.8,
respectively. These results clearly point out that the
existence of an inflection point in 1np vs E plots is a
general qualitative feature of the density of states for
the 3D random-potential model and should therefore
be experimentally observable if potential fluctuations
are the only underlying physics of the phenomena. In
this regard we note that our results support the qualita-
tive near-tail features of the HL theory and the CPA,
since in the region of E & 0 both show positive curva-
tures for lnp. For CPA, however, the point of inflec-
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tion can become less and less obvious and eventually
disappear as w increases beyond 2.

Recently the works of Abe and Toyozawa, "
Economou et al. ,

' Sritrakool, Sa-yakanit, and Glyde,
and John et ai 8h. ave all shown that in the deep-tail re-
gion, i.e. , E&40, both the CPA and a continuum
model of potential fluctuations with finit correlation
length can yield n = 1 behavior over an extended en-
ergy range. Comparison with experimental results also
yields reasonable values for the parameters of the
theories. Since in the limit of E ~ both the CPA
and the field theoretical solution of the continuum
model are asymptotically exact, s'3 their extension to
values of F. in the deep-tail region should be reason-
ably accurate. This implies that together with our nu-
merical simulation results in the near-tail region, there
is now a complete picture of tail density of states for
the 3D random-potential model over the entire energy
range. In order of increasing E, the three essential
features of this picture consist of (1) an inflection
point (a & 1) in the near-tail region, (2) an extended
tail region with a = 1, and (3) the eventual Gaussian
decay with n - 2. If we assume that the a = 2 segment
would be masked by other processes, then in order for
the above picture to account for the experimental
results it is crucial to ask whether the u & 1 near-tail
behavior and its implied inflection point have been ex-
perimentally observed in the energy range where the
band tail joins onto the band edge. To our knowledge,
there is yet no experimental support in the literature
for this type of near-tail behavior. '2 Therefore, be-
sides urging the reexamination of experimental data in
light of the new evidence presented in this work, we
would also like to speculate that if the qualitative
behavior of a & 1 is not observed or is observed only
in a limited class of materials, then there could be
mechanisms in addition to random potential fluctua-
tions which play a significant role in the near-tail re-
gion. Since the random-potential model neglects
electron-electron and (the dynamical aspect of)
electron-phonon interactions, the effects of these in-
teractions on the tail density of states and the optical
absorption edge suggest themselves as a natural direc-
tion for further investigation. In fact, a combination
of these interactions has been proposed as the
mechanism responsible for the phenomenon of Ur-
bach tail. '6

In conclusion, we have performed direct numerical
calculation of the band-tail density of states for the
tight-binding, random potential model in d = 1, 2, and
3. Besides confirming the scaling behavior of p(E)
and providing a basis of comparison for the various
phenomenological theories, our results suggest that
the intrinsic near-tail behavior of the 3D random po-
tential model is distinct from that deduced from exper-
imental data, thereby implying a more complex origin
for the exponential tail.
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