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Algebraic Approach to Dissociation from Bound States
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An algebraic treatment of continuous spectra based on noncompact groups is extended to allow
discussion of dissociation from bound states. Transition matrix elements between bound and con-
tinuum states can be evaluated algebraically by the construction of transition operators that
transform according to the infinite-dimensional unitary representations of the noncompact dynami-
cal group. The method is employed to calculate dissociation rates in the Morse potential, for which
the relevant group is SO(2, 1).

PACS numbers: 03.6S.Fd, 02.20.+ b, 24.90.+d, 34.80.6s

Recently, the algebraic approach to bound states,
useful in nuclear' and molecular2 physics, has been ex-
tended to the continuum. ' In bound-state problems,
a major advantage of the algebraic approach is the easy
evaluation of transition matrix elements such as those
related to electromagnetic decay. The inclusion of the
continuum opens a new and interesting problem,
namely the algebraic evaluation of transition matrix
elements between bound and scattering states. These
quantities describe the probability that a system will
dissociate from some bound level into fragments with
a given relative kinetic energy.

By using what we call the "potential algebra, "which
is noncompact, we were able to unify the treatment of
bound and scattering spectra; the discrete representa-
tions of a system's noncompact algebra describe its
bound states while the continuous principal-series
representations correspond to its continuum states.
The purpose of this Letter is to demonstrate that this
algebra can be used to calculate dissociation rates; to
the best of our knowledge, these have been evaluated
analytically only for the Coulomb potential, ' through
very different techniques from the ones to be present-
ed here. Our basic idea is to construct transition
operators that transform like irreducible tensors under
the potential group, and then use a Wigner-Eckart
theorem carefully adapted to noncompact algebras.
An important conclusion will be that in order to obtain
finite nonvanishing matrix elements between bound
and continuum states, particular classes of tensor
operators must be employed. The finite-dimensional
nonunitary representations, though they provide sim-
ple selection rules for bound-to-bound transitions, are
unsuitable for dissociation.

As in some of our previous investigations, we shall
illustrate our ideas with a discussion of a simple one-
dimensional system possessing SO(2, 1) symmetry, in
this case the Morse potential. The Hamiltonian is ob-
tained from the SO(2, 1) realizations

J, = e -"&[ + B/Bp —i B/By —e & + —,
' ],

J, = —i B/Bg

The basis states corresponding to the dynamical sym-
metry SO(2, 1)D SO(2) are characterized by

Clj m& =j(j +1)jlm&, J,jlm& =mljm&, (2)

where C = J,' —(J+J +J J+)/2 is the Casimir in-
variant of the algebra. In the realization (1) they
describe eigenstates of a Schrodinger equation

[ —B'/Bp'+(e '& 2me )—]u'(p)
= —(j+—,

' )'~' (p),

where Ij,m) = ui (p)e' ~. A simple translation p
p —ln(m) takes Eq. (3) into that for a Morse po-

tential, V = m2(e 'i' —2e i').
The following SO(2, 1) unitary irreducible represen-

tations appear in (2): (a) the discrete representations
Di+ with j = —2i, —1, —23, . . . and m = —j, —j+1,
—j + 2, . . . , describing bound states with energy
p = —(j + —,), and (b) the continuous principal-
series representations Cia with j = ——, + ik, k ) 0, and
m =0, +1, +2, . . . for 8=0 and m = + —', + —', . . .
for 5 = —, , corresponding to continuum states with en-
ergy E = k . Within a given representation the energy
is constant but the strength of the potential
changes —hence the name "potential algebra. "

To calculate bound-state- to-bound-state and
bound-state-to-continuum transitions we employ
SO(2, 1) tensor operators (the generators themselves
will not connect different representations). The first
class of operators that suggests itself transforms ac-
cording to the simple finite-dimensional nonunitary
SO(2, 1) representations D, . These representations,
which correspond to the well-known unitary represen-
tations of SO (3), have j= —,', 1,—', , . . . and m = —j,
—j + 1, . . . , j. Operators TJ transforming according
to them have been successfully used to calculate
bound-bound transition matrix elements in the
Coulomb and harmonic-oscillator problems. ' Con-
sider transitions induced by such operators between
states corresponding to different potentials (such tran-
sitions are important, for example, in the description
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of molecular transitions during which the electronic
configurations change). Suppose that the initial state
lj, , m, ) is bound and therefore belongs to the
representation D, +, ; it has energy —(ji+ —,

' ) and is

associated with a potential of strength m&. The final
state lJ3~ m3) has energy —(j3 + —,

' )', belongs to a po-
tential of strength m3, and can be either a bound or
continuum state. %e want to evaluate the matrix ele-
ments of T' between these two objects. The states
obtained by operating on the lji, mi) with the tensor
operator T" above form a basis for the Kronecker
product representation DJ+, x DJ, . Its decomposition

into irreducible representations, given by %ybourne, "
contains D, , and D, in addition when the initial state
is one of the higher-lying levels. The former clearly
have no overlap with the continuum states. The latter,
while they are nonunitary and therefore not automati-
cally orthogonal to the C& representations, can be
shown to yield divergent amplitudes when projected
onto the continuum states. We therefore conclude
that for the Morse potential, tensors belonging to thc
D, representations can never produce finite nonvan-
ishing matrix elements for dissociation processes.

This result leads us to consider tensor operators
transforming under one of the infinite-dimensional
unitary representations" of SO(2, 1), either D, +or C,s. -
For these representations, the shift operators act as
follows:

[Jp, T~ ]= [(j +m)(m +j +1)]'~2TJ

pling of D+ and D yields both the D+ (with some
restrictions of the range of j) and the C series, so that
we do expect to be able to connect bound and continu-
um states using D tensor operators. ' This case will
be discussed in more detail in a longer paper. For the
rest of this work we shall discuss transition operators
transforming according to the representations C,",
which always include an m = 0 component.

The Kronecker product appropriate for these transi-
tions yields under decomposition

r
—]/2+i c

j3= —1

(a similar decomposition exists for C,'~2). Thus a ten-
sor that transforms according to one of the C represen-
tations can connect a bound state j& to every bound or
continuum state j3. The m = 0 component corre-
sponds to the important special case in which the po-
tential strength does not change during the transition.
We recall that for the continuous representations
j2= ——,

' +IK, so that in a coordinate representation
the operator is proportional to e ~ 2e'"~.

We turn now to the algebraic evaluation of the tran-
sition matrix elements. The procedure is based on the
Wigner-Eckart theorem, which may be extended to
noncompact groups like SO(2, 1) provided that no de-
generacy occurs in the Kronecker product and all the
representations involved are orthogonal to one anoth-
er. Like its SU(2) angular-momentum-coupling coun-
terpart, the theorem states that

In the Morse realization the momentum-independent
tensors turn out to be given by

TJ = [I ( —j—m)/I (j —m +1)]'~2eji'e'

The matrix element we wish to evaluate then takes the
form

(J3 m3lT'

dp u", (p)e" u" (p), (6)

~here m2= rn3 —rn&.

Since j2 is (0 (for the discrete series) or is complex
(j2= ——, + ik for continuous series), we should now
obtain finite bound-continuum matrix elements.
However, the Kronecker product for the coupling of
two D+ representations'2 yields only D+ 's; thus while
a tensor belonging to one of these will connect bound
states, it is useless for dissociative processes. The cou-

(J,, m31 T", lj, , m, )

(Jim 1 j2m2 IJ3m3) (J3 I I
&'I

Iji) . (8)

This equation expresses the fact that the m (potential)
dependence of the matrix element is completely deter-
mined by the SO(2, 1) Clebsch-Gordan coefficient
(jtmi, j2mqlj3m3). Thus, once we know that matrix
element for one case we know it for all cases.

SO(2, 1) Clebsch-Gordan coefficients for the cou-
pling of the various different kinds of representations
have been extensively investigated. ' '' They can be
obtained from recursion relations'5 and turn out al-
ways to bc proportional to a generalized hyper-
geometric function 3F2 of unit argument (the study of
these objects was systematized by Whipple long ago' ).
The coefficient in which we are interested at the mo-
ment is given in equation (2.37) of Ref. 12. Using
symmetry relations for the 3F2's, wc write it in the
form

(iim, ,i2m2lj3m3) = n(j) I (mi —j,)I (m, —j,)
I'(m2 —ji —j3) I (mi+j i+1)l (m3+j 3+ l)I ( —m2+j 2+1)I ( —m2 —j2)

"3F2(—mi —ii. i i+i 2 i 3. i i
——i2 —i3 —I;m—2

—ii —i3.——2Ji;I)
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where u(j) is a complicated function that does not
depend on the m's and therefore will divide out in the
application of Eq. (8). This form of the coefficient has
the advantage that neither the I functions nor the 3F2
function have poles at the points at which we evaluate
them. Further, since —

m&
—

j& is always negative, the
expansion of the 3F, function involves only a finite
number of terms, and is readily evaluated numerically.

To complete the calculation we need an expression
for the reduced matrix element, or equivalently for the
complete matrix element given one particular choice
of the m quantum numbers. This quantity is not
determined by the potential algebra but can be evaluat-
ed analytically for the Morse oscillator having values

of m for which the wave functions simplify. The
ground state of the Hamiltonain has the simple form'
(with x = 2e e)

li, —j)e ""~ "'""e J4'/[2v r( —2j)]'i'

Furthermore, when m =0, the Schrodinger problem
corresponds to the especially simple potential Y
= e '~. The solutions then take the form
= E, + &i2(x/2)/[mI ( —j ——,

'
) ]'i', where K is a Bessel

function of fractional order j+ —,
' ==ik; p is a normal-

ized scattering solution with energy k'. Using these to
calculate the overlap integral, we find for the reduced
matrix element of the bound (j&) to continuum
(j3 ————,

' +ik) transition

(j3, 0I &,' lii, -it)
(j3II T"Iljt) =

(A —J t,J2J ~ IJ3o)

J2+ 1/2 r(J, +1)r(-J, )

(j) ' r( —2i )r( —2ji —1)
r( —j, —j+j)r( i, j, —i, —1)—— (10)

%'e may now combine (8)-(10) to obtain for the bound-state-continuum transition matrix element the result

« —it —i2+i3)« i i i2- i—3
—I)—

(J3,m3I& ', IJt, mi) =
I'(j + —,

' ) I (m, —j,—j,)

I" (m, —j()r (m3 —j3)I'(j3+ 1)I'( —j3)
I (mt+i~+1)I (m3+ j3+1)I ( —m2+ j2+1)I'( —m2 —j2)I ( —2j~)I'( —2j& —1)

+ 3F2( mt Jl J I +J2 J3 —J ~ J2 J3 I;m2 ——
i&

—i3, ——2i~, l )—.

Bound-bound transitions may be evaluated in a com-
pletely analogous fashion.

For transitions from the ground state (m& ———j, )
the hypergeometric function in (11) is equal to 1.
Since we have normalized the continuum states in the
usual way [to 5(k —k')], it is clear that the square of
(11) is just the transition probability density in
momentum space. If we are interested in the distribu-
tion versus energy, we have to multiply the square of
(11) by the energy-level density, which in one dimen-
sion is I/JE. In Fig. 1 we have plotted the distribu-
tion of transition probabilities over the bound and con-
tinuum states for a particular choice of the transition
operator. The location of the peak in the continuum is
sensitive to the imaginary part K of the tensor label j2.
The strength at E = 0 always vanishes because of the
properties of the zero-energy wave function.

%e note in passing that independent of the value of
j2, the transition strength to all the bound and contin-
uum states sums to —(j&+ —,), the expectation value

t

in the ground state of the operator T with j2 ———l. A
similar energy-weighted sum rule can also be derived
by considering the commutator of the Casimir opera-
tor (the Hamiltonian up to a constant) with T.

There appears to be a range of applications for the
techniques described in this Letter. Transition opera-
tors similar to the ones considered here appear in
atomic ionization processes resulting from collisions
with fast electrons. ' Operators of the form e'~ (j
real) have also been used in the analysis of dipole
(bound-to-bound) transitions in molecules. " Further-
more, the tensor operators discussed here can be seen
to form a complete set so that arbitrary transition
operators may be expanded in the T's. Finally, our
ideas apply naturally in algebraic models incorporating
angular momentum of the kind discussed, e.g. , by
Alhassid, Iachello, and %u. ' These may be useful in
modeling complex problems in molecular and atomic
physics, where prospects for an algebraic treatment of
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dissociation seem most promising.
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