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At the anomalously high density of ~— 9 g/cm?, expanded liquid mercury is found to undergo a
metal-nonmetal transition which is associated with the formation of a gap in the density of states at
the Fermi energy. Although previous calculations have all yielded values of the density for the
metal-nonmetal transition that are too low ( ~ 5.5 g/cm?), it is shown that a simple model em-
phasizing fluctuations in the local coordination number produces the correct value.

PACS numbers: 71.30.+h, 64.70.Fx, 71.25.Lf, 71.55.Jv

During the last ten years, considerable effort has
been put into investigating the properties of metals
near their critical points. Much of this effort has
focused on mercury, one of the few metals whose crit-
ical point is accessible under laboratory conditions. A
comprehensive understanding of the electron structure
of liquid Hg at high temperatures and pressures has so
far been lacking. Experimental measurements such as
those of the Knight shift,""2 conductivity,® and optical
properties* have indicated that as the density is
lowered, a gap in the density of states appears to
develop between the 6s and 6p bands (and thus at the
Fermi energy, Eg) at a density, p, of ~9 g/cm’. The
opening of this gap is associated with a metal-nonmetal
(M-NM) transition at the same density. On the other
hand, most theoretical calculations™® indicate that a
gap should not open until a density in the region of the
critical point is reached (p, ~ 5.5 g/cm?).

To explain the anomalous behavior of Hg in both
the liquid and vapor phases near the critical point,
Turkevich and Cohen’ have postulated the existence
of an excitonic insulator phase. They argue that no
single-particle picture, with or without disorder, can
produce a real gap at p ~ 9 g/cm? and therefore a col-
lective effect must be occurring. In this paper, I pro-
pose a single-particle model that produces a real gap at
the correct density. Central to this model is the fluc-
tuation in local coordination numbers caused by the
disordered structure of an expanded fluid.

The strongest evidence that a real gap in the density
of states opens at p ~ 9 g/cm® comes from the NMR
measurements of El-Hanany and Warren,! which show
that the Knight shift vanishes at this density,? indicat-
ing that the density of s states at Ex becomes negligi-
ble. As already noted by others,”® these measure-
ments are inconsistent with a pseudogap model. In an
attempt to understand the vanishing of the Knight
shift, Mattheiss and Warren® carried out band-
structure calculations for Hg. To simulate the change
in density they performed their calculations for crystal-
line structures of different coordination number. The
justification for this is as follows: Neutron-diffraction
measurements’ on expanded liquid Rb for densities

down to ~ % of the melting-point density indicate that
the expansion of metals occurs in a way that is similar
to that of the rare-gas liquids.! In these systems the
structural data show that the nearest-neighbor distance
remains roughly constant as the density is reduced; the
coordination number, however, decreases. For liquid
Hg a similar analysis of the x-ray measurements yields
a constant nearest-neighbor value of 3.07 A in the lim-
ited density range 13.68-12.87 g/cm>.!! The fact that
the interatomic distance of the Hg dimer!? is very
similar (~ 3.2 A vs ~ 3.1 A) to that of the liquid!! in-
dicates that if changes do occur at lower densities, they
should be quite small. The average coordination
number, Z, is then nearly proportional to the density.
Matheiss and Warren® showed that as Z (and thus p)
decreased by a factor of ~ 3, the bandwidth of filled
states decreased by a factor of — 2. However, a real
gap developed only at Z ~4 (or p~ 5.5 g/cm?®) in
agreement with other calculations but not with experi-
ments.

The model discussed here is also based on the as-
sumption of a linear decrease in average coordination
number with decreasing density, but in addition it
takes into account the fact that the actual local coordi-
nation numbers will be distributed randomly over a
range of values surrounding the mean value. As the
density is reduced, some atoms will have such low
coordination numbers that interactions with their
neighbors are insufficient to cause overlap between
their s and p states; they will thus have an ‘‘energy
gap’’ between their s and p states. From previous cal-
culations> 13 on fluid Hg with uniform density, one can
estimate that for Z=4 (p~ 5.5 g/cm?®) a gap is just
on the verge of opening, while for Z=3 (p~4.1
g/cm?) a gap of 2-3 eV should exist. Thus although
the strong disorder in the random fluid will produce
band-tailing effects that will smear out local effects for
atoms with Z =4, we expect that for those with Z <3
the band tails will be insignificant near Eg and shall as-
sume that a real gap remains. We find that at a well-
defined density, the local gap of these low-coordinated
atoms ‘‘percolates’’ throughout the liquid, creating a
real gap in the total density of states. It should be not-
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ed that this random model is completely unrelated to
that of Cohen and Jortner!* in which classical percola-
tion theory was applied to a system assumed to have
microscopic inhomogeneities.

The physical basis of this model of the M-NM tran-
sition is illustrated in Fig. 1 for a cluster of atoms on a
two-dimensional lattice representing an instantaneous
configuration. For the example shown, the maximum
value of Z for each atom is 6, but because the average
density is somewhat reduced, ‘‘vacancies’ are present
and Z =4.9. Now consider a tight-binding picture in
which transport occurs by means of nearest-neighbor
hopping. We assume as above that atoms with Z =4
have a continuous density of states, while those with
Z =<3 have a gap at Ef in their local density of states
as shown in Fig. 2. In Fig. 1(a) all of the atoms in the
configuration shown have Z =4, and thus all take part
in conduction; the system is a good conductor. In Fig.
1(b) an additional atom has been removed, causing
one atom (the shaded one) to have Z =3. This atom
now has no states with energy near Ex which deters
electrons having energies near Eg from hopping onto
it from neighboring atoms. These neighboring atoms,
indicated by thicker lines, thus have their effective
coordination number, Z, reduced by 1 throughout a
range of energy near Er. Since this reduction in Z  is
sufficient that an additional atom (labeled 1) now has
Z =3, the above effect begins to propagate. From
Fig. 1(b), it can be seen that the removal of just one
atom from the original configuration is sufficient for
an effective energy gap to spread cooperatively
throughout the entire cluster, leading now to a M-NM
transition. The numbers show the progression of the
spread of the energy gap; those with lower numbers
helping to create gaps for those of higher numbers. In
this example, the gap ‘‘percolates’’ throughout the
system when the density is reduced by a moderately
small 15%-20%, whereas with the alternative assump-
tion of uniform coordination number, a reduction of
~ 40% is required to achieve the same result.

FIG. 1. Atoms in a two-dimensional cluster. The com-
plete border of dashed circles that surround the cluster
shows that no vacancies lie on the edge of the cluster. (a)
The cluster with nine vacancies. (b) The cluster with ten va-
cancies. The additional vacancy causes the shaded atom to
have only three nearest neighbors.
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Although the above example is oversimplified, it il-
lustrates the main aspects of the model. The local-
density fluctuations drive the M-NM transition to oc-
cur at an average density considerably higher than that
predicted for a uniform system. In addition, because
the transition depends on the formation of a gap that is
governed by probabilistic relations similar to those of
the ‘‘percolation probability’’ of percolation theory, it
is continuous but very sharp.

The physical effect demonstrated in Fig. 1 can be in-
vestigated in a random, three-dimensional system with
a simple, tight-binding quantum percolation Hamil-
tonian:

z
H= E t,--cjfci
in which the hopping parameter, #;, has only two pos-
sible values; namely ¢ if a hop to a particular neighbor-
ing site is possible and zero otherwise. We use a
standard, single-particle Green’s-function method,
with a Bethe lattice to represent the disordered system
and a Monte Carlo technique (which has been
described previously'®) to produce the random local
environment. Since within this model the local atomic
configurations play the dominant role in causing the
M-NM transition, the use of a Bethe lattice, which
produces the correct local atomic environments,
should give a good approximation to the density at the
transition, even though it ignores closed loop paths.
We take liquid Hg to be a random alloy of Hg atoms
and vacancies with the concentration, x, of Hg propor-
tional to Z and equal to 1.0 at the melting point. We
follow Mattheiss and Warren® and take Ze«p with
Z =10 for p=p,, the density at the melting point,
which leads to x = Z/10. We assume that atoms with
Z == 4 are accessible at all energies near Ep but take
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FIG. 2. A schematic representation of the local density of
states in the neighborhood of Er. The solid curve pertains
to atoms with Z =4. The dashed curve indicates that for
Z =<3, a gap occurs at Ef.
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atoms with Z or Z =3 to have a real gap in the re-
gion of Er. Since, in actuality, a very small band tail is
always present and such band-tailing effects are cumu-
lative, one would not expect the effect of a low-
coordinated atom in reducing the Z of its neighbors
to propagate infinitely far, even near the M-NM transi-
tion. To make sure that the model does not depend on
such an unphysical assumption, I examined the effect
of imposing a reasonable cutoff on the propagation of
Zs < Z. The calculations show that a cutoff at the
sixth nearest neighbor has little effect on the density at
which we predict the M-NM transition should take
place, but a more severe cutoff does affect our results.

The calculated density of states per atom at Ef,
n(Eg), is shown in Fig. 3 together with the Knight-
shift measurements,? which are proportional to the
density of s states at Eg. It can be seen that n (Eg)
drops sharply to zero at x =0.67 which corresponds to
Z=6.7 and p ~ 9 g/cm? in excellent agreement with
experiment. Although at this concentration, only
~ 4% of the atoms have Z < 3, this number is suffi-
ciently large to create a gap in the density of states in
the system.

The sharpness of the transition is, of course, exag-
gerated by the simplicity of the model. In the first
place, the nearest neighbors of an atom in a liquid do
not all lie at the nearest-neighbor distance but instead
have a range of interatomic distances 4. Since the
overlap integral, which is represented by the hopping
parameter ¢ falls off exponentially with 4, hopping oc-
curs only over some small spread in d values.
Nevertheless, this spread in d will introduce a range of
t values and broaden the transition somewhat. In addi-
tion, the cumulative band-tailing effects mentioned
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FIG. 3. The calculated density of states of Ef as a func-
tion of density shown on a relative scale (the shaded line).
Also shown are the Knight-shift measurements from Ref. 2
(experimental points with connecting line).

above cause atoms that are further from those with
Z =3 to have reduced gap widths. Just at the M-NM
transition, an effective gap, one that averages over
band-tailing effects of all the atoms, forms. As the
density is reduced further, the number of atoms with
low coordination number grows very rapidly, increas-
ing the effective gap width. These effects, taken to-
gether, should account for the gradual increase in gap
width deduced from conductivity measurements.?> Of
course, the conductivity measurements themselves
show an additional broadening caused by thermal ac-
tivation across the gap.

The very close agreement between the calculated
density for the M-NM transition and its measured
value must be somewhat fortuitous considering the ap-
proximations that have been made. Of crucial impor-
tance for the model considered is, for example, the as-
sumption that the nearest-neighbor distance, d,
remains constant as the density is reduced. For in-
stance, an increase of 1% in d would reduce the density
at the M-NM transition by ~4%. (An increase of
10% in d would allow other theoretical models’® to ac-
count for the M-NM transition, but such a large
change in d is very unlikely as discussed above.) The
use of a different constant of proportionality between
Z and p can also cause a small shift in the calculated
density for the M-NM transition.

Within the framework of the above model it is
tempting to speculate about the nature of fluid Hg at
densities just below the M-NM transition. As p falls
below 9 g/cm?, the conductivity falls rapidly and the
metallic contribution to the cohesive energy falls cor-
respondingly. In this region, atoms can recapture
some of this cohesive energy, provided that the ran-
dom density fluctuations place them in clusters that
are sufficiently large and dense. Thus large, dense
clusters are expected to occur with more than random
probability. In this region the microscopic inhomo-
geneities proposed by Cohen and Jortner'* may well
exist. Since large, dense clusters have also been postu-
lated to exist in the vapor phase above 3 g/cm?,!6!7
the structures of the two phases would approach each
other in the region of the critical point. The large
separation between the density at which the M-NM
transition occurs and that at the critical point can be
understood in terms of the thermally activated conduc-
tivity. This persists well beyond the M-NM transition>
(the conductivity falls off much more slowly than the
Knight shift with decreasing density), and contributes
sufficiently to the cohesive energy to retain the liquid
state.

Our simple model shows that it is quite reasonable
that a gap in the density of states of Hg opens as the
density is lowered to p ~ 9 g/ cm?; it is not necessary to
invoke collective effects. Other calculations have not
found a gap because they have ignored the random
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fluctuations in the atomic coordination number. That
the expanded alkali metals behave quite differently
from expanded Hg can also be understood easily in
terms of this model. Random fluctuations in Z are
also expected to occur in the alkali metals, but Eg for
these systems lies in the middle of the s band. If a gap
were to open between the s and p bands, as in Hg, it
would have little effect. Much lower particle densities
are required to open a gap in the middle of the s band,
and it is observed that M-NM transitions in the alkali
metals occur only when densities near the critical den-
sity are reached.!®
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